CS 290B

Scalable Internet Services

Andrew Mutz

November 17,2014

Today’s Agenda

e The Client-side Renaissance

e http://backbonejs.org/examples/todos/

The Browser Wars

e Mid-90s Netscape reigns supreme

e Microsoft releases initial version of
Internet Explorer in 1995

e Competition between Netscape and
Microsoft produces significant
innovation in browsers
o Javascript
o Cookies
o CSS

The Browser Wars

Microsoft bundles Internet Explorer to Windows 98

e Every file management window is a browser
e Eventually triggers an antitrust lawsuit against Microsoft

Meanwhile, Netscape focuses on open-sourcing it’s browser

e Eventually creates the Mozilla foundation
e Acquisition by AOL

The Browser Wars

Browser Wars Microsoft wins.

100%

0% Internet Explorer

80% becomes the

70% dominant browser
60% for roughly a decade.

50%
40%

30%
|:|Others (Opera, Safari, PSP...)

20% B Firefox, Mozilla, Camino, etc.
l Netscape classic
10% . Internet Explorer for Windows

0% i
1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009

The Browser Wars

Version Release Year Lull in browser innovation

IE 1 1995 commences

IE 2 1995 e Lack of competition means
IE3 1996 no reason to innovate

IE4 1997 e Time between releases

IES 1999

IE6 2001

I[E7 2006

IE8 2009

The Browser Wars

e Duetoavariety of factors, Microsoft slowly loses market
share to Firefox (Mozilla)

o Security
o Performance

e As Microsoft is slowly bleeding market share, Google
announces Chrome

e Browser innovation reignites, today there are at
least 4 viable browsers.

Browser Market Share Today

CHROME
Usage share of web browsers e PO
FIREFOX
IE
o | OPERA
~ ANDROID
— Internet Explorer
= Firefox
3 = Chrome
— Safari
— QOpera
° —— Mobile vs Desktop
3
o _]
— <
c
[0
o
[0}
o o _|
[}
o _|
[a)
o _]
= H
e 7 H
o
T T T T T T 3!
2009 2010 2011 2012 2013 2014 B

Year
Source: StatCounter Source: http://en.wikipedia.org/wiki/Usage_share_of_web_browsers

..'“looun'"’.

Client-side renaissance

During the browser dark ages, three things

eventually spurt
o XMLHTTPRec

ne client side renaissance
uest

e DOM Manipu
o V8

ation

XMLHttpRequest (Ajax)

Allows JavaScript on the page to asynchronously request resources from the
server.

var req = new XMLHttpRequest();

req.onload = function() {

console.log(“I’m a callback!”);

s

req.open(''get", "/comments", true);

req.send();

Originally added to IE to enable the Outlook Web Access team to async.'
communicate with the server (year ~2000). !

e Other browsers implement it, becomes de facto standard by ~2004.

XMLHttpRequest (Ajax)

Prior to this, two-way communication with the server meant a full page refresh
e Either aclicked link or a submitted form.

This method allows javascript in your browser to send requests and receive
responses completely programmatically.

e Example: As you type, google.com will show you intermediate results.

Most people don’t use this method directly. jQuery is commonly used
as an abstraction layer:

$.get('/comments', function(data) { alert(“I’'m a callback!”);});

XMLHttpRequest (Ajax)

Security limitation:

e Theserequests can only go to the originating domain that the Javascript was served from.
e This prevents randomsite.com from (say) accessing your gmail inbox
o Allrequests use existing cookies, of which your session is one.
e This works pretty well for things like Google Analytics, they can phone home to Google, but can’t
access the server-side resources of the website they are on.

This technique is now referred to as Ajax

e Asynchronous JavaScript and XML

e XML wasoriginally envisioned as the transport format, but there is nothing
XML-specific about it.

e Today, XML is not as regularly used as JSON for transport.

DOM Manipulation

e Document Object Model
o Astandardized way of representing the structure of a web page as a
tree of in-memory objects
o These objects are accessed via Javascript and can be queried and
manipulated
e Example:
var newDiv = document.createElement("div");
var newContent = document.createTextNode("Hello World!");
newDiv.appendChild(newContent);
document .body.appendChild(newDiv);

DOM Manipulation

Progression of DOM Manipulation:

e DOM Level O: Navigator 2, IE 3(~1995).
o Allowed reading the values of forms and links.
o Not standardized (called legacy DOM)
e DOM Level 1: Navigator 4, IE 5 (~1998)
o Allowed access and modification of anything by index
B document.forms[1l].elements[2]
e DOM Level 2: ~2000
o added getElementByld(), DOM event model
e DOM Level 3: ~2004, current
o XPath support, keyboard event handling

V8: Javascript Gets Fast

September 2008, Google releases Chrome

e |n addition to other novel features, it includes the V8 Javascript engine
e V8 applies modern, state of the art VM techniques to Javascript
o Notinterpreted: dynamically compiled to machine code
m Re-compiled and re-optimized at runtime
o Garbage collector is fast
m Generational: separates allocated memory into young and old
groups, treats them differently
m Incremental: doesn’t need to perform all GC at once
o Applies other modern VM optimizations:
m inlining, code elision, inline caching

V8: Javascript Gets Fast

V8 treats Javascript performance seriously, and triggers
other browsers to do the same.

e Safari’s JavaScriptCore
e |E’sChakra
e Firefox’s SpiderMonkey

Today these VMs are all roughly evenly matched.
e Performance leader goes back and forth, but in the same ballpark

Sidenote: V8 was designed to also work well outside of the browser.
It is the execution engine that Node.JS is built on.

V8: Javascript Gets Fast

kraken time
6000
5000 .
B Chrome (v8)
% s B safari (jsc)
o .
g I Firefox (Ion)
5 3000 .
: ~ B Firefox (Ion, GGC old)
%
S " Chrome (v8-turbofan)
1000
0
Jul 2012 Apr Feb Aug Nov 7 Nov 9 Nov 10
2013 2014
, octane score 200 sunspider time
1
600 \
.
5000 [efe elelelelele elole v elelele e e ol e e e sle e ele \
500 00000000000000000000000000004
I
E
= 0000000,
10000 E 400
4 = Q
8 c
@ S
2 300
15000 3 :.
o
3|
o
H
20000 H
100 o
H
S
25000 0 %
Dec Jul 2013 Mar Sep Nov 7 Nov 9 Nov 10 Jul 2012 Apr Feb Aug Nov 7 Nov 9 Nov 10 <
2012 2014 2013 2014

..'“looun'"’.

Source: http://arewefastyet.com

Client-side Renaissance

So, by 2008, we have all the ingredients ready for a client-side renaissance:

e Globally installed virtual machines
e ..thatcan present content that can communicate via Ajax to the internet
service they originated

e ..that have full programmatic control of the user interface (DOM).
e ..thatuse modern, high performance VM techniques
e ...thatexist in acompetitive marketplace

o Four viable browsers, available on multiple OSes

o Competing to stay ahead of the pack

o Standards-compliance is a competitive advantage

These are things we enjoy today that we did not always have.

Client-side Renaissance

What do these modern client-side applications look like?

e |nstead of being a series of pages requested from a web server, we can serve
up arunning javascript application
o This application is regularly sending user input back to the server
o This application is regularly receiving structured data instead of
rendered markup.
e These applications generally persist through user interactions
o Clicks don’t necessarily mean full-page refreshes
e Communication with the server is decoupled from user interaction 7
o While the browser sits open, a javascript timer can go and /
check for new data and update the page as needed

Client-side Renaissance

Consequences of this shift

Client side logic is much more complex and full page refreshes are more rare
It’s possible to build applications that work “offline”

It’s possible to build effective “push” mechanisms

The “running application” is much more static and cacheable

The apis you build to serve up structured data can be used by mobile
applications and other internet services

e “Real” Javascript VMS enable very ambitious use of CPU
resources

Client-side Renaissance

Client side logic is much more complex and full page
refreshes are more rare

Client-side MVC, Today

It’s possible to build applications that work “offline”

HTML5 local storage APls, Today

It’s possible to build effective “push” mechanisms

HTML5 WebSockets, future lecture

The “running application” is much more static and
cacheable

“How to build a Content Distribution
Network,” next Tuesday, Nov 25

“Real” Javascript VMS enable very ambitious use of CPU
resources

“ASM.js and Emscripten”, Dec 2

The apis you build to serve up structured data can be
used by mobile applications and other internet services

“REST, JSON, and Optimizing for Mobile”,
Dec4

Client-side Renaissance

So you’re interested in building a web application that moves
much of its logic and rendering to the client...

Let’s look at an example of this transition, in our LabApp.

Client-side Renaissance

In a traditional web application:

e When you click the “New Submission” All submissions
button, the browser makes a new Title uri Community

Use of GOTO considered harmful http://www.google.com ProgrammingShowEditDestroy
A Mathematical Theory of Communication http://bell-labs.com ProgrammingShowEditDestroy

HTTP request and Ioads the res ponse Gardening with saltwater: Why isn't it working?http://www.wikipedia.comGardening ~ ShowEditDestroy
e Theresponseis an entire web page,
. . Log In| Sign U
and with it are numerous assets. e

e The page returned has form elements s

e Whenyou fill out the form and

submit it, the server may find it New submission
invalid and send back another form.

e List of submissions only changes Communty
when you refresh the page. [

Log In | Sign Up

Client-side Renaissance

In a client-side web application:

e When you click the “New Submission” All submissions

M H Title Url Community
b u tto n ’ J ava SC r I pt exe C u te S a n d Use of GOTO considered harmful http://www.google.com ProgrammingShowEditDestroy
A Mathematical Theory of Communication http://bell-labs.com ProgrammingShowEditDestroy
red raWS t h e pa ge to S h OW a fo r m . N O Gardening with saltwater: Why isn't it working?http://www.wikipedia.comGardening ~ ShowEditDestroy
HTTP requests occur.

Log In| Sign Up

e When you fill out the form and
submit it, the input is validated in the s
browser using javascript.

e Ifvalid, an Ajax request is sent tothe New submission
server

e List of submissions only changes live. o

Create Submission
Back
Log In | Sign Up

Client-side Renaissance

Benefits:
e Ulisextremelyresponsive All submissions

Title Url Community

L t k t ff M Use of GOTO considered harmful http://www.google.com ProgrammingShowEditDestroy
. e S S n e WO r r a I C A Mathematical Theory of Communication http://bell-labs.com

ProgrammingShowEditDestroy
Gardening with saltwater: Why isn't it working?http://www.wikipedia.comGardening ~ ShowEditDestroy

e Live updates!

Log In| Sign Up

EEEEE
Costs:

New submission

e Clientside codeis much
more complex. —

Client-side Renaissance

Client side code is much more complex

e Before, the client was mostly displaying a static page.
e Now, the client must:

o Understand the relationship between input events and
corresponding DOM updates

valid input from invalid input

o Keep a persistent connection to the server
and display updates as they come in.

Client-side Renaissance

How should our application design adjust to this
drastic increase in complexity?

e Onedesign approach: “A tangled pile of jQuery selectors
and callbacks, all trying frantically to keep data in sync
between the HTML Ul, your JavaScript logic, and the
database on your server.”

Client-side MVC

How should our application design adjust to this
drastic increase in complexity?

e One popular approach to managing this

complexity is the use of MVC frameworks on
the client.

Client-side MVC

MVC: Model-View-Controller

e You all know it from Rails

e Separates the presentation (View) of your data from the data itself (Model).
e Controller exists to accept and coordinate updates to the Models.

e Models encapsulate business logic and state.

There are many client side frameworks that implement variations of these. Today
we will talk about three: =

e Backbone
e Angular
e Ember

Client-side MVC

Backbone.js

e Developed by Jeremy Ashkenas (creator of CoffeeScript
and Underscore.js)
e Most lightweight of the libraries we will be
discussing today
e Really Model-View-Router
o Router maps URL fragments to functions

Popular websites using Backbone:
e Airbnb, Hulu, Groupon, Pinterest, LinkedIn

Client-side MVC

Backbone Model Sample

var Sidebar = Backbone.Model .extend({
promptColor: function() {
var cssColor = prompt("Please enter a CSS color:");

this.set({color: cssColor});

3
3D

window.sidebar = new Sidebar;

sidebar.on('change:color', function(model, color) {
$('#sidebar').css({background: color});

s

sidebar.set({color: 'white'});

sidebar.promptColor();

Client-side MVC

Backbone View Sample

var DocumentRow = Backbone.View.extend({

tagName: "l1i",

className: "document-row",

events: {
"click .button.edit": "openEditDialog"

T

initialize: function() {
this.listenTo(this.model, '"change", this.render);

T

render: function() {
this.$el.html(this.template(this.model .attributes));

return this;

3D

of
....'000.0000"..

Client-side MVC

Backbone Router Sample

var Workspace = Backbone.Router.extend({

routes: {
"help": "help", // #help
"search/:query": "search", // #search/kiwis
"search/:query/p:page": "search" // #search/kiwis/p7
T

help: function() {

s

search: function(query, page) {

3D

Client-side MVC

Backbone Highlights:

e Lightweight (1700 lines)

e Templating aghostic

e Doesn’t handle unbinding events
o Canlead to memory leaks

e For full-blown Single Page Apps, you might
be better off with one of the larger frameworks

Client-side MVC

Angular.js

e MVC framework supported and promoted by Google.
e Much larger and more complex than Backbone
o Responsible for much more
e Suitable for Single Page Applications
Emphasis on declarative style for building Ul
e Uses two-way data binding

Notable websites using Angular:
e AWS console, HBO, VirginAmerica

Client-side MVC

Two-way data binding:

Two-Way Data Binding

Change to View | | / Continuous Updates "\ | | change to Modet

updates Model | | | Model is Single-Source-of-Truth / [| updates View

Client-side MVC

Data Binding Example: 1
<div ng-app ng-init="qgty=1;cost=2"> 5
<div> |
Quantity: <input type="number" min="0" ng-model="qty": |
</div>
<div>
Costs: <input type="number" min="0Q" ng-model='"cost'">
</div>
<div>Total : {{qty ¥* cost | currency}}</div>
</div>

http://plnkr.co/edit/EpVIAulGMdHymMakqGMx?p=preview

Client-side MVC

Model Example:

<div ng-controller="Controller">
Hello <input ng-model='name'> <hr/>

</div>

angular.module('docsBindExample', [])
.controller('Controller', ['$scope', function($scope) {

$scope.name = 'Andrew';

31D

Client-side MVC

Angular Highlights:

e Ambitious and large framework that
really turns the page into an application

e Databinding provides a lot of magic

A framework you adopt wholesale

e Declarative style retains HTML traditional
nature

Client-side MVC

Ember.js

e Created by prominent members of the

Rails community
o Yehuda Katz

e Has much in common with Angular
o All-in framework
o Two way binding
o Templating has similar flavor

Client-side MVC

Ember Highlights

e Focus on convention over configuration
e Focusonstandards compliance

e ES6 modules over custom modules

e ES6 polyfillsin places

HTML5 Localstorage

If we have a javascript application running in our browser, it
might be nice for it to sometimes be less reliant on the
network
e Data persistence is important, and the network isn’t
always up.
o Mobile devices in particular
e \We may want to intentionally enter a period of
no network and still use the application
o Airplane flight

HTML5 Localstorage

Modern browsers have “Localstorage” APls.

SessionStorage: data is persisted as long as the
browser remains open.

LocalStorage: data persists between
browser executions.

HTML5 Localstorage

LocalStorage
lLocalStorage.setItem("key", "value");
lLocalStorage.getltem("key");

Most powerfully used when the value is a large, structured
JSON document.

Application developer must manage synchronizing
localstorage data with updates on server

HTML5 Localstorage

Demo!
e http://people.w3.org/mike/localstorage.html

For Next Time

Sample Funkload scripts are up (https: //github.
com/scalableinternetservices/labapp/tree/master/load testin

)

e Start working on writing Load Testing scripts. We will be
providing EC2 instances configured to simplify load
testing.

e Prep for tomorrow’s demo (on EC2)

Thursday: Colin Kelley, CTO & Founder, Invoca

https://github.com/scalableinternetservices/labapp/tree/master/load_testing
https://github.com/scalableinternetservices/labapp/tree/master/load_testing
https://github.com/scalableinternetservices/labapp/tree/master/load_testing
https://github.com/scalableinternetservices/labapp/tree/master/load_testing

