CS 290B

Scalable Internet Services

Andrew Mutz

October 28,2014

Motivation

Motivation

Concurrency Control in Rails
Query Analysis

For Next Time...

Title

, & — DNS looki
“ * ’
=

7 Persistent
DNS lookup ee ~
- * < Persistent '

TCP

W Fage Tl ,,_ég o~
s -

v

-

-
Persistent

TCPSYN=- — —

< — — -TCPSYNACK- — — =
— —TCP ACK, HTTP REQUEST - —»

< — -HTTP RESPONSE - — — —

\ Assets via
Third party s, €PN
iframes
\
\
|

—_—
s s |

eeccrcseseee®”

Motivation

We've got many application servers
running our application.

We are using a relational database to
ensure that each request sees a
consistent view of the database.

IS - |3

What does this look like in practice?

Concurrency Control in Rails

Rails uses two types of concurrency control:
e Optimistic
o Let’s not prevent concurrency problems, but instead

detect them. And blow up when we detect them.
e Pessimistic
o Let’s prevent concurrency problems before thev start.

Concurrency Control in Rails

Optimistic locking in Rails

e Easytosetup:justaddaninteger Lock version columnto thetablein
question.
e Whenever an ActiveRecord object is read from the database, the
Lock_versionisremembered.
e When the programmer tries to persist this object back to the database, it
compares the Lock version it saw with the current lock version.
o Ifthey aredifferent, it throwsa StaleObjectException .
o Ifthey are the same, it writes to the database and increments 7
the Lock_version
e Thislocking is an application level construct, the database knows i
nothing about it

Concurrency Control in Rails

Optimistic Locking Example:
pl = Product.find(5)
pl.name = “Daipers”

p2 = Product.find(5)
p2.name = “Sheets”

pl.save! # works fine
p2.save! # throws StaleObjectException

Concurrency Control in Rails

Optimistic locking
Strengths:

e Predictable performance
e Lightweight

Weaknesses:

e Sometimes your users will see errors
o Oryouwill engineer re-tries

Concurrency Control in Rails

Pessimistic locking in Rails

e FEasytouse:justaddalock:true optionto ActiveRecord find.
e Whenever an ActiveRecord object is read from the database with that
option, an exclusive lock is acquired.
e While thislockis held, others are prevented from acquiring the lock or
reading/writing the value.
o Others block until lock is released.
e Thislockingis database-level locking.

Concurrency Control in Rails

Pessimistic locking example:

transaction do

pl = Product.find(5).lock(true)
pl.name = “Daipers”
pl.save! # works fine

end

This works great, yet its not commonly used.
e What could possibly go wrong?

transaction do

p2 = Product.find(5).lock(true)
p2.name = “Sheets”
p2.save! # works fine

end

Concurrency Control in Rails

What could possibly go wrong?

transaction do transaction do

pl = Product.find(5).lock(true)

pl.name = “Daipers”
pl = Product.find(5).lock(true)
my_long _procedure() pl.name = “Daipers”
pl.save!
pl.save!
end

end

Concurrency Control in Rails

What could possibly go wrong?

transaction do transaction do
0l = Order.find(7).lock(true) pl = Product.find(5).lock(true)
e pl.name = “Daipers”
pl = Product.find(5).lock(true) pl.save!
pl.name = “Daipers” e
pl.save! 0l = Order.find(7).lock(true)
ol.amount = 4 ol.amount = 4
ol.save! ol.save!

end end

Concurrency Control in Rails

Pessimistic locking
Strengths:
e Failed transactions are more rare

Weaknesses:

e Need to deal with deadlocks
e Performanceis less predictable

Concurrency Control in Rails

Which mode would you choose?

transaction do
determine_auction_winner()
send_email to_winner()
save_auction_outcome()

end

Concurrency Control in Rails

Which mode would you choose?

transaction do

record_facebook like()

update global counter of all Likes ever()
end

Query Analysis

Ok, so you've hooked up MySQL to your Rails app and it’s
slower than you'd like.

You think it might be the database. How do we find out?

Query Analysis

First step: find out what Rails is doing.

In development mode, Rails will put the SQL it’s generating in
the log.

To (temporarily) enable this in production, change:
config.log level = :debug
inconfig/environments/production.rb

Query Analysis

Community Load (1.9ms) SELECT “communities .* FROM ‘communities™ WHERE
‘communities . id’ = 4 LIMIT 1

Submission Load (12.7ms) SELECT "submissions’.* FROM "submissions’
WHERE “submissions . community_id’ IN (4)

Comment Load (39.4ms) SELECT "comments’ .* FROM 'comments’ WHERE
‘comments . submission_id IN (4, ... 10104)

User Load (2.1ms) SELECT ‘users’ .* FROM ‘users’ WHERE
‘users . id" IN (1)

Query Analysis

mysql> SELECT COUNT(DISTINCT "submissions . id) FROM "submissions”™ JOIN

‘comments’ WHERE ‘comments’'. submission_id’' = "submissions'. id AND
‘comments’ . message = 'This is not a test!';

e T e +

| COUNT(DISTINCT ‘submissions . 'id) |
e e e T PP +

| 10200 |

e T e +

1 row in set (0.11 sec)

Query Analysis

mysql> EXPLAIN SELECT COUNT(DISTINCT "submissions’.

‘submissions® JOIN ‘comments’ WHERE ‘comments' . submission_id’

‘submissions’. id® AND ‘comments’'. message’ = 'This is not a
test!'\G
1. row
id: 1

select_type: SIMPLE
table: comments
type: ALL
possible_keys: NULL

key: NULL
key_len: NULL
ref: NULL
rows: 19188

Extra: Using where

id: 1
select_type: SIMPLE
table: submissions
type: eq_ref
possible_keys: PRIMARY
key: PRIMARY
key_len: 4

ref: default_db_name.comments.submission_id

rows: 1
Extra: Using index

2 rows in set (0.00 sec)

TOW HFEXEXXXXXXKXXXKXXXKXXKXXXK KX

....'000.0.00‘...

Query Analysis

With MySQL you can use EXPLAIN to analyze
queries

e Won't actually execute the query.

e Helps usunderstand how and when MySQL will use
indices.

e Returns atable of data from which you identify
potential improvements

Query Analysis

How to read EXPLAIN output:

These results are the most important for performance
analysis

select_type The SELECT type

type The join type

possible_keys | The indices available to be chosen

key The index actually chosen

rows Estimate of rows to be examined

Query Analysis

select type
The type of select statement being performed.
e Most are fine, but two indicate potential performance

problems
o Dependent Subquery: reevaluated for every different

value of the outer query
o Uncacheable Subquery: reevaluated for every
value of the outer query =

Query Analysis

type
The type of JOIN being used. From best to worst:

system - The table only has one row

const - From uniqueness, we know only one row can match
eq_ref, ref - Only one row at most can match from the previous table
fulltext - mysql fulltext index

ref_or_null - like ref, but also null values

index_merge

unique_subquery

index_subquery

range - Only rows in a given range are retrieved, but can use index
index - Full table scan, but can scan index instead of actual table
ALL - Full table scan

Query Analysis

possible keys & key

Possible keys lists the indices that could possibly be
used. Key indicates which was actually chosen.

e Ifyoudon'tlike the index that MySQL is using, you can
tell it to ignore indices using the IGNORE INDEX

e If possible keys is null, you have no indices that MySQL
can use and should consider adding some. <

Query Analysis

T'OwS

MySQL'’s estimate of how many rows need to be read. If this
number is really big, that can indicate a problem.

Query Analysis

Optimizations take three main forms:

e Add or modify indices
e Query optimizations
e Modify table structure

o Denormalization, for example

Query Analysis - Indices

What is an index?

e Fast,compact structure for identifying row locations
e Chopdown your result set as quickly as possible
o MySQL will only use one index per table per query

o It cannot combine two separate indexes to make one
more useful index.

Query Analysis - Indices

Adding indices in Rails:

class AddNameIndexProducts < ActiveRecord: :Migration
def change
add_index :products, :name
end
end

Query Analysis - Indices

Adding foreign keys in Rails:

e The “Rails way” is to enforce these things at the application layer
e You may disagree, in which case you can use the “Foreigner” gem like so:

class AddForeignKeyToOrders < ActiveRecord: :Migration
def change
add_index :orders, :products
end
end

Query Analysis - Indices

Indices work best when they can be kept in
memory. Some ways to trim the fat:

e Canlreduce the charactersinthat VARCHAR index?

e CanluseaTINYINT instead of a BIGINT?

e Canluseaninteger todescribe a status
instead of a text-based value?

Query Analysis - Query Optimization

Another way to improve performance is to modify your
query.
Example at the Rails level:

¢ = Community.find(4)
c.submissions.each do |s|
puts "Submission is #{s.title}"
puts "Number of comments is #{s.comments.size}"
puts "First commenter is #{s.comments.first.user.email}"
end
2963ms

Query Analysis - Query Optimization

SELECT

communities.* FROM communities

WHERE communities.id = 4 LIMIT 1
c = Community.find(4)

SELECT submissions.* FROM submissions WHERE submissions.community id = 4
c.submissions.each do |s]|

puts "Submission is #{s.title}"

SELECT COUNT(*) FROM "comments’™ WHERE ‘comments’ . submission_id"

puts "Number of comments is #{s.comments.size}"
SELECT comments.* FROM comments

= X

WHERE comments.submission_id = X
SELECT users.* FROM users WHERE users.id =

1 ...-uu .ouo..

puts "First commenter is #{s.comments.first.user.email}"
end

2963ms

Query Analysis - Query Optimization

Why is this faster?

¢ = Community.includes({:submissions => {:comments => :user}}).find(4)
c.submissions.each do |s|

puts "Submission is #{s.title}"

puts "Number of comments is #{s.comments.size}"

puts "First commenter is #{s.comments.first.user.email }"
end
519ms

Query Analysis - Query Optimization

¢ = Community.includes({:submissions => {:comments => :user}}).find(4)
SELECT “communities .* FROM ‘communities’ WHERE ‘communities’ . id’ = 4
SELECT “submissions' .* FROM ‘submissions®™ WHERE “submissions’' . community_id" IN (4)

SELECT "comments .* FROM "comments’ WHERE ‘comments’' . submission_id IN (4... 10104)

SELECT ‘users .* FROM ‘users’ WHERE ‘users’. id’ IN (1...)
c.submissions.each do |s]|

puts "Submission is #{s.title}"

puts "Number of comments is #{s.comments.size}"

puts "First commenter is #{s.comments.first.user.email}"
end

519ms

Query Analysis - Query Optimization

Modify your query.
Example at the SQL level:

mysqgl> explain select count(*) from txns where parent_id - 1600 = 16340

select_type: SIMPLE

table: txns

type: index

key: index_txns_on_reverse_txn_id
rows: 439186

Extra: Using where; Using index

Query Analysis - Query Optimization

Modify your query.
Example at the SQL level:

mysqgl> explain select count(*) from txns where parent_id = 16340 + 1600
select_type: SIMPLE
table: txns
type: const
key: index_txns_on_reverse_txn_id
rows: 1
Extra: Using index

Query Analysis

Intuition is often wrong...

e Alocal company complained about a db performance problem
e Theybroughtin alocal database consultant to help them
e Looking at the problem every query was taking from 100ms to 1 second

e What was the problem?

Query Analysis

What was the problem?

e Toestablish a connection to the database can take 100ms+

e Bothclient and server need to authenticate and reserve resources such as
threads and memory/cache

e If youdon’t reuse these connections this can be the bottleneck

e Connection pooling solved the problem

e Connection poolingis web app 101

For Next Time...

Be prepared to demo your first sprint’s worth of
work tomorrow at lab!

