
CS 290B
Scalable Internet Services

Andrew Mutz
October 28, 2014

Motivation

Motivation

Concurrency Control in Rails

Query Analysis

For Next Time...

Title

Motivation

We’ve got many application servers
running our application.

We are using a relational database to
ensure that each request sees a
consistent view of the database.

What does this look like in practice?

Concurrency Control in Rails

Rails uses two types of concurrency control:

● Optimistic

○ Let’s not prevent concurrency problems, but instead
detect them. And blow up when we detect them.

● Pessimistic
○ Let’s prevent concurrency problems before they start.

Concurrency Control in Rails

Optimistic locking in Rails
● Easy to setup: just add an integer lock_version column to the table in

question.
● Whenever an ActiveRecord object is read from the database, the

lock_version is remembered.
● When the programmer tries to persist this object back to the database, it

compares the lock_version it saw with the current lock version.
○ If they are different, it throws a StaleObjectException
○ If they are the same, it writes to the database and increments

the lock_version
● This locking is an application level construct, the database knows

nothing about it

Concurrency Control in Rails

Optimistic Locking Example:
p1 = Product.find(5)

p1.name = “Daipers”

p2 = Product.find(5)

p2.name = “Sheets”

p1.save! # works fine

p2.save! # throws StaleObjectException

Concurrency Control in Rails

Optimistic locking

Strengths:

● Predictable performance
● Lightweight

Weaknesses:

● Sometimes your users will see errors
○ Or you will engineer re-tries

Concurrency Control in Rails

Pessimistic locking in Rails
● Easy to use: just add a lock:true option to ActiveRecord find.
● Whenever an ActiveRecord object is read from the database with that

option, an exclusive lock is acquired.
● While this lock is held, others are prevented from acquiring the lock or

reading/writing the value.
○ Others block until lock is released.

● This locking is database-level locking.

Concurrency Control in Rails

Pessimistic locking example:
transaction do

 p1 = Product.find(5).lock(true)

 p1.name = “Daipers”

 p1.save! # works fine

end

transaction do

 p2 = Product.find(5).lock(true)

 p2.name = “Sheets”

 p2.save! # works fine

end

This works great, yet its not commonly used.

● What could possibly go wrong?

Concurrency Control in Rails

What could possibly go wrong?
transaction do

 p1 = Product.find(5).lock(true)

 p1.name = “Daipers”

 …

 my_long_procedure()

 …

 p1.save!

end

transaction do

 p1 = Product.find(5).lock(true)

 p1.name = “Daipers”

 p1.save!

end

Concurrency Control in Rails

What could possibly go wrong?
transaction do

 o1 = Order.find(7).lock(true)

 ...

 p1 = Product.find(5).lock(true)

 p1.name = “Daipers”

 p1.save!

 …

 o1.amount = 4

 o1.save!

end

transaction do

 p1 = Product.find(5).lock(true)

 p1.name = “Daipers”

 p1.save!

 ...

 o1 = Order.find(7).lock(true)

 …

 o1.amount = 4

 o1.save!

end

Concurrency Control in Rails

Pessimistic locking

Strengths:

● Failed transactions are more rare

Weaknesses:

● Need to deal with deadlocks
● Performance is less predictable

Concurrency Control in Rails

Which mode would you choose?

transaction do

 determine_auction_winner()

 send_email_to_winner()

 save_auction_outcome()

end

Concurrency Control in Rails

Which mode would you choose?

transaction do

 record_facebook_like()

 update_global_counter_of_all_likes_ever()

end

Query Analysis

Ok, so you’ve hooked up MySQL to your Rails app and it’s
slower than you’d like.

You think it might be the database. How do we find out?

Query Analysis

First step: find out what Rails is doing.

In development mode, Rails will put the SQL it’s generating in
the log.

To (temporarily) enable this in production, change:

config.log_level = :debug

in config/environments/production.rb

Query Analysis

 Community Load (1.9ms) SELECT `communities`.* FROM `communities` WHERE
`communities`.`id` = 4 LIMIT 1

 Submission Load (12.7ms) SELECT `submissions`.* FROM `submissions`
WHERE `submissions`.`community_id` IN (4)

 Comment Load (39.4ms) SELECT `comments`.* FROM `comments` WHERE
`comments`.`submission_id` IN (4, … 10104)

 User Load (2.1ms) SELECT `users`.* FROM `users` WHERE
`users`.`id` IN (1)

Query Analysis

mysql> SELECT COUNT(DISTINCT `submissions`.`id`) FROM `submissions` JOIN
`comments` WHERE `comments`.`submission_id` = `submissions`.`id` AND
`comments`.`message` = 'This is not a test!';

+------------------------------------+

| COUNT(DISTINCT `submissions`.`id`) |

+------------------------------------+

| 10200 |

+------------------------------------+

1 row in set (0.11 sec)

Query Analysis
mysql> EXPLAIN SELECT COUNT(DISTINCT `submissions`.`id`) FROM
`submissions` JOIN `comments` WHERE `comments`.`submission_id` =
`submissions`.`id` AND `comments`.`message` = 'This is not a
test!'\G

*************************** 1. row ***************************

 id: 1

 select_type: SIMPLE

 table: comments

 type: ALL

possible_keys: NULL

 key: NULL

 key_len: NULL

 ref: NULL

 rows: 19188

 Extra: Using where

*************************** 2. row ***************************

 id: 1

 select_type: SIMPLE

 table: submissions

 type: eq_ref

possible_keys: PRIMARY

 key: PRIMARY

 key_len: 4

 ref: default_db_name.comments.submission_id

 rows: 1

 Extra: Using index

2 rows in set (0.00 sec)

Query Analysis

With MySQL you can use EXPLAIN to analyze
queries
● Won’t actually execute the query.
● Helps us understand how and when MySQL will use

indices.
● Returns a table of data from which you identify

potential improvements

Query Analysis

How to read EXPLAIN output:

These results are the most important for performance
analysis

select_type The SELECT type

type The join type

possible_keys The indices available to be chosen

key The index actually chosen

rows Estimate of rows to be examined

Query Analysis

select_type
The type of select statement being performed.

● Most are fine, but two indicate potential performance
problems

○ Dependent Subquery: reevaluated for every different
value of the outer query

○ Uncacheable Subquery: reevaluated for every
value of the outer query

Query Analysis

type
The type of JOIN being used. From best to worst:
● system - The table only has one row
● const - From uniqueness, we know only one row can match
● eq_ref, ref - Only one row at most can match from the previous table
● fulltext - mysql fulltext index
● ref_or_null - like ref, but also null values
● index_merge
● unique_subquery
● index_subquery
● range - Only rows in a given range are retrieved, but can use index
● index - Full table scan, but can scan index instead of actual table
● ALL - Full table scan

Query Analysis

possible_keys & key
Possible_keys lists the indices that could possibly be
used. Key indicates which was actually chosen.

● If you don’t like the index that MySQL is using, you can
tell it to ignore indices using the IGNORE INDEX

● If possible_keys is null, you have no indices that MySQL
can use and should consider adding some.

Query Analysis

rows
MySQL’s estimate of how many rows need to be read. If this
number is really big, that can indicate a problem.

Query Analysis

Optimizations take three main forms:

● Add or modify indices
● Query optimizations
● Modify table structure

○ Denormalization, for example

Query Analysis - Indices

What is an index?
● Fast, compact structure for identifying row locations
● Chop down your result set as quickly as possible
● MySQL will only use one index per table per query

○ It cannot combine two separate indexes to make one
more useful index.

Query Analysis - Indices

Adding indices in Rails:

class AddNameIndexProducts < ActiveRecord::Migration

 def change

 add_index :products, :name

 end

end

Query Analysis - Indices

Adding foreign keys in Rails:
● The “Rails way” is to enforce these things at the application layer
● You may disagree, in which case you can use the “Foreigner” gem like so:

class AddForeignKeyToOrders < ActiveRecord::Migration

 def change

 add_index :orders, :products

 end

end

Query Analysis - Indices

Indices work best when they can be kept in
memory. Some ways to trim the fat:
● Can I reduce the characters in that VARCHAR index?
● Can I use a TINYINT instead of a BIGINT?
● Can I use an integer to describe a status

instead of a text-based value?

Query Analysis - Query Optimization

Another way to improve performance is to modify your
query.

Example at the Rails level:

c = Community.find(4)

c.submissions.each do |s|

 puts "Submission is #{s.title}"

 puts "Number of comments is #{s.comments.size}"

 puts "First commenter is #{s.comments.first.user.email}"

end

2963ms

Query Analysis - Query Optimization

SELECT communities.* FROM communities WHERE communities.id = 4 LIMIT 1

c = Community.find(4)

SELECT submissions.* FROM submissions WHERE submissions.community_id = 4

c.submissions.each do |s|

 puts "Submission is #{s.title}"

 # SELECT COUNT(*) FROM `comments` WHERE `comments`.`submission_id` = X

 puts "Number of comments is #{s.comments.size}"

 # SELECT comments.* FROM comments WHERE comments.submission_id = X

 # SELECT users.* FROM users WHERE users.id = 1

 puts "First commenter is #{s.comments.first.user.email}"

end

2963ms

Query Analysis - Query Optimization

Why is this faster?

c = Community.includes({:submissions => {:comments => :user}}).find(4)

c.submissions.each do |s|

 puts "Submission is #{s.title}"

 puts "Number of comments is #{s.comments.size}"

 puts "First commenter is #{s.comments.first.user.email}"

end

519ms

Query Analysis - Query Optimization

c = Community.includes({:submissions => {:comments => :user}}).find(4)

SELECT `communities`.* FROM `communities` WHERE `communities`.`id` = 4

SELECT `submissions`.* FROM `submissions` WHERE `submissions`.`community_id` IN (4)

SELECT `comments`.* FROM `comments` WHERE `comments`.`submission_id` IN (4... 10104)

SELECT `users`.* FROM `users` WHERE `users`.`id` IN (1...)

c.submissions.each do |s|

 puts "Submission is #{s.title}"

 puts "Number of comments is #{s.comments.size}"

 puts "First commenter is #{s.comments.first.user.email}"

end

519ms

Query Analysis - Query Optimization

Modify your query.

Example at the SQL level:

mysql> explain select count(*) from txns where parent_id - 1600 = 16340

 select_type: SIMPLE
 table: txns
 type: index
 key: index_txns_on_reverse_txn_id
 rows: 439186
 Extra: Using where; Using index

Query Analysis - Query Optimization

Modify your query.

Example at the SQL level:

mysql> explain select count(*) from txns where parent_id = 16340 + 1600
 select_type: SIMPLE
 table: txns
 type: const
 key: index_txns_on_reverse_txn_id
 rows: 1
 Extra: Using index

Query Analysis

Intuition is often wrong…
● A local company complained about a db performance problem

● They brought in a local database consultant to help them

● Looking at the problem every query was taking from 100ms to 1 second

● What was the problem?

Query Analysis

What was the problem?

● To establish a connection to the database can take 100ms+

● Both client and server need to authenticate and reserve resources such as

threads and memory/cache

● If you don’t reuse these connections this can be the bottleneck

● Connection pooling solved the problem

● Connection pooling is web app 101

For Next Time...

Be prepared to demo your first sprint’s worth of
work tomorrow at lab!

