CS 290B

Scalable Internet Services

Andrew Mutz

October 23,2014

Today’s Agenda

A Stable Data Layer: Motivation
Database Concurrency Control
User Authentication with Devise
-or Next Time...

e NS

e
)

lookup

Wb P Tl

Assets via

Third party Js, CON

iframes
\

=T}

< — — -TCPSYNACK
— —TCP ACK, HTTP REQUEST = =P

< — —HTTP RESPONSE = — — —

Persistent
TCP

~

¥ < Persistent
TCP - -
v

-
Persistent
TCP

*0eccssossene®”

A Stable Data Layer - Transactions

We have many application
servers running in parallel.

Each needs to persist data that A

persists between requests. . Concurrent
. Requests _y

Consistent
Results?

The prevailing way to do this 5
today is with Relational ="
Databases

A Stable Data Layer - Transactions

These application servers have

needs ==
e Data needs to be seen by | \‘\\
other requests/servers o~ N
e Access shouldn’t be slow ~ Concurrent ™ Consistent
e Data layer should make Requests _v esults?
sense:

david.withdrawal (100)
mary.deposit(100)

A Stable Data Layer - Transactions

Using transactions in Rails is easy:
ActiveRecord: :Base.transaction do
david.withdrawal (100) sl N
mary.deposit(100)

end !‘llllll:: J ‘ -~ - - - ~ \

Concurrent
Requests _y

Consistent

. Results?
Today we will learn more about how

these transactions are implemented.

Next time we will learn about
transactions in practice

A Stable Data Layer

Database Transactions

e Background

o Concept that allows a system to guarantee certain
semantic properties. Gives control over concurrency.

o Rigorously defined guarantees mean we can build
correct systems on top of them.

A Stable Data Layer - Transactions

History of Database Transactions

e Mid1970’s, IBM System R’s RSS
o First system to implement SQL

o Introduced formal notions of transactions and
serializability

o Led by Jim Gray
m Result: 1998 Turing Award.

A Stable Data Layer - Transactions

ACID properties in a database:

e Atomicity
o Allor nothing.
o No partial application of a transaction.

e Consistency
o At the beginning and at the end of the transaction, the
database should be consistent.
o Consistency is defined by the integrity constraints

A Stable Data Layer - Transactions

ACID properties in a database:

e |solation

O A transaction should not see the effects of other
uncommitted transactions.

e Durability
o Once committed, the transaction’s effects should not
disappear. (being overwritten by later transactions is fine)

A Stable Data Layer - Transactions

These have overlapping concerns

e Atomicity and Durability are related and are generally provided
by journalling

e Consistency and Isolation are provided by concurrency control
(usually implemented via locking)

No help with side-effects

e Actions that are visible outside of the system
e Transfer money, communicate with web service, etc.

A Stable Data Layer - Transactions

Schedule (or “history”):

e Abstract model used to describe execution of
transactions running in the system.

T1 | R(X), W(X), Com.

T2 RCY), W(Y), Com.

T3 R(Z), W(Z), Com.

A Stable Data Layer - Transactions

Conflicting Actions:

e Two actions are said to be in conflict if
o The actions belong to different transactions
o Atleast one of the actions is a write operation
o The actions access the same object (read or write)

e Example of conflicting actions:
o T1: R(X), T2: W(X), T3: W(X)
e And these are not conflicting:
o T1: R(X), T2: R(X), T3: R(X)
o T1: R(X), T2: W(CY), T3: R(X)

Conflict => we can'’t blindly execute them in parallel.

A Stable Data Layer - Transactions

Why can’t we blindly execute them in parallel? Example:

Lost Update Problem

2nd transaction writes a value on top of a 1st transaction and the value is lost
to other transactions running concurrently with the 1st transaction.
Concurrent read transactions will have incorrect results.

T1 | RCX) RCXD RCXD. ..

T2 W(X) Com.

A Stable Data Layer - Transactions

Why can’t we blindly execute them in parallel? Example:

Dirty Read Problem

Transactions read a value written by a transaction that is later aborted and
removed from the database. Reading transactions will have incorrect results.

T1 RCXD W(Y), Com.

T2 | W(X) Abort

A Stable Data Layer - Transactions

Why can’t we blindly execute them in parallel? Example:

Incorrect Summary Problem

1st transaction takes a summary over the values of all the instances of a
repeated data item. While a 2nd transaction updates some instances of the
data item. Resulting summary will not reflect a correct result for any
deterministic order of the transactions. Result will be random depending on

the timing of the updates. 2Ok

T1 | RCALL X), AVG WCY) Com.

T2 | W(Some X), Com.

A Stable Data Layer - Transactions

A schedule is serial if
e The transactions are executed non-interleaved

Two schedules are conflict equivalent if

e They involve the same actions of the same transactions
e Every pair of conflicting actions is ordered in the same way

Schedule S is conflict serializable if
e Sisconflict equivalent to some serial schedule

A schedule is recoverable if

e Transactions commit only after all transactions whose changes
they read, commit.

A Stable Data Layer - Transactions

Example of a schedule that is not conflict serializable:

T1 | RCA), W(A) R(B), W(B)

T2 RCA), WCA), R(B), W(B)

Because it is not conflict equivalent to this:

T1 | RCA), W(A), R(B), W(B)

T2 RCA), W(A), R(B), W(B)
or this:
T1 RCA), W(A), R(B), W(B)

T2 | RCA), WCA), R(B), W(B)

A Stable Data Layer - Transactions

Why is it important that TR
we get a serializable o=~ Consistent
schedule? . Requests _y rosdls?

A Stable Data Layer - Transactions

Otherwise you can get inconsistent results - not good when you are keeping
track of your bank balance in the database

A serial execution of transactions is safe but slow

Most general purpose relational databases default to employing conflict-
serializable and recoverable schedules

If you don’t want to do a serial execution, what else can you do?

A Stable Data Layer - Transactions

How do we implement a database that schedules that are
conflict serializable and recoverable?

Locks

e Alockis asystem object associated with a shared resource such as a data
item, a row, or a page in memory

e A database lock may need to be acquired by a transaction before arrmcmg
the object P =

e Preventundesired, incorrect, or inconsistent operations on shared 7
resources by concurrent transactions

A Stable Data Layer - Transactions

Two types of database locks:

e \Write-lock

o Blocks writes and reads

o Also called “exclusive lock”
e Read-lock

o Blocks writes

o Also called “shared lock”

A Stable Data Layer - Transactions

Two-Phase Locking

e 2PLis aconcurrency control method that guarantees serializability
e Two-Phase Locking Protocol

o Each Transaction must obtain a S (shared) lock on object before

reading, and an X (exclusive) lock on object before writing
m [faTransaction holds an X lock on an object, no other Transaction
can get a lock (S or X) on that object

o Atransaction cannot request additional locks once it releases any Iocks

o Two phases: acqwre locks, release locks
e Issue:canresultin “cascading aborts”

R(A) W(A) unlock(A) «........
T2: RCA) oo,

A Stable Data Layer - Transactions

Strong Strict Two-Phase Locking

e SS2PL allows only conflict serializable schedules
e SS2PL Protocol
o Each Transaction must obtain a S (shared) lock on object before
reading, and an X (exclusive) lock on object before writing
m [faTransaction holds an X lock on an object, no other Transaction
can get a lock (S or X) on that object
o Alllocks held by a transaction are released when the transaction
completes

e Avoids cascading aborts

Today’s Agenda

Up Next: User Authentication with Devise

For Next Time...
e Code, code, code!

