
CS 290B
Scalable Internet Services

Andrew Mutz
October 23, 2014

Today’s Agenda

A Stable Data Layer: Motivation

Database Concurrency Control

User Authentication with Devise

For Next Time...

Title

A Stable Data Layer - Transactions

We have many application
servers running in parallel.

Each needs to persist data that
persists between requests.

The prevailing way to do this
today is with Relational
Databases

A Stable Data Layer - Transactions

These application servers have
needs

● Data needs to be seen by
other requests/servers

● Access shouldn’t be slow
● Data layer should make

sense:
 david.withdrawal(100)

 mary.deposit(100)

A Stable Data Layer - Transactions

Using transactions in Rails is easy:
ActiveRecord::Base.transaction do

 david.withdrawal(100)

 mary.deposit(100)

end

Today we will learn more about how
these transactions are implemented.

Next time we will learn about
transactions in practice

A Stable Data Layer

Database Transactions
● Background

○ Concept that allows a system to guarantee certain
semantic properties. Gives control over concurrency.

○ Rigorously defined guarantees mean we can build
correct systems on top of them.

A Stable Data Layer - Transactions

History of Database Transactions
● Mid 1970’s, IBM System R’s RSS

○ First system to implement SQL

○ Introduced formal notions of transactions and
serializability

○ Led by Jim Gray
■ Result: 1998 Turing Award.

A Stable Data Layer - Transactions

ACID properties in a database:
● Atomicity

○ All or nothing.
○ No partial application of a transaction.

● Consistency
○ At the beginning and at the end of the transaction, the

database should be consistent.
○ Consistency is defined by the integrity constraints

A Stable Data Layer - Transactions

ACID properties in a database:
● Isolation

○ A transaction should not see the effects of other
uncommitted transactions.

● Durability
○ Once committed, the transaction’s effects should not

disappear. (being overwritten by later transactions is fine)

A Stable Data Layer - Transactions

These have overlapping concerns
● Atomicity and Durability are related and are generally provided

by journalling
● Consistency and Isolation are provided by concurrency control

(usually implemented via locking)

No help with side-effects
● Actions that are visible outside of the system
● Transfer money, communicate with web service, etc.

A Stable Data Layer - Transactions

Schedule (or “history”):

● Abstract model used to describe execution of
transactions running in the system.

T1 R(X), W(X), Com.

T2 R(Y), W(Y), Com.

T3 R(Z), W(Z), Com.

A Stable Data Layer - Transactions

Conflicting Actions:

● Two actions are said to be in conflict if
○ The actions belong to different transactions
○ At least one of the actions is a write operation
○ The actions access the same object (read or write)

● Example of conflicting actions:
○ T1: R(X), T2: W(X), T3: W(X)

● And these are not conflicting:
○ T1: R(X), T2: R(X), T3: R(X)
○ T1: R(X), T2: W(Y), T3: R(X)

Conflict => we can’t blindly execute them in parallel.

A Stable Data Layer - Transactions

Why can’t we blindly execute them in parallel? Example:

Lost Update Problem

2nd transaction writes a value on top of a 1st transaction and the value is lost
to other transactions running concurrently with the 1st transaction.
Concurrent read transactions will have incorrect results.

T1 R(X) R(X) R(X)...

T2 W(X) Com.

A Stable Data Layer - Transactions

Why can’t we blindly execute them in parallel? Example:

Dirty Read Problem

Transactions read a value written by a transaction that is later aborted and
removed from the database. Reading transactions will have incorrect results.

T1 R(X) W(Y), Com.

T2 W(X) Abort

A Stable Data Layer - Transactions

Why can’t we blindly execute them in parallel? Example:

Incorrect Summary Problem

1st transaction takes a summary over the values of all the instances of a
repeated data item. While a 2nd transaction updates some instances of the
data item. Resulting summary will not reflect a correct result for any
deterministic order of the transactions. Result will be random depending on
the timing of the updates.

T1 R(All X), AVG W(Y) Com.

T2 W(Some X), Com.

A Stable Data Layer - Transactions

A schedule is serial if
● The transactions are executed non-interleaved

Two schedules are conflict equivalent if
● They involve the same actions of the same transactions
● Every pair of conflicting actions is ordered in the same way

Schedule S is conflict serializable if
● S is conflict equivalent to some serial schedule

A schedule is recoverable if
● Transactions commit only after all transactions whose changes

they read, commit.

A Stable Data Layer - Transactions

Example of a schedule that is not conflict serializable:

T1 R(A), W(A) R(B), W(B)

T2 R(A), W(A), R(B), W(B)

T1 R(A), W(A), R(B), W(B)

T2 R(A), W(A), R(B), W(B)

T1 R(A), W(A), R(B), W(B)

T2 R(A), W(A), R(B), W(B)

Because it is not conflict equivalent to this:

or this:

A Stable Data Layer - Transactions

Why is it important that
we get a serializable
schedule?

A Stable Data Layer - Transactions

Otherwise you can get inconsistent results - not good when you are keeping
track of your bank balance in the database

A serial execution of transactions is safe but slow

Most general purpose relational databases default to employing conflict-
serializable and recoverable schedules

If you don’t want to do a serial execution, what else can you do?

A Stable Data Layer - Transactions

How do we implement a database that schedules that are
conflict serializable and recoverable?

Locks
● A lock is a system object associated with a shared resource such as a data

item, a row, or a page in memory
● A database lock may need to be acquired by a transaction before accessing

the object
● Prevent undesired, incorrect, or inconsistent operations on shared

resources by concurrent transactions

A Stable Data Layer - Transactions

Two types of database locks:

● Write-lock
○ Blocks writes and reads
○ Also called “exclusive lock”

● Read-lock
○ Blocks writes
○ Also called “shared lock”

A Stable Data Layer - Transactions

Two-Phase Locking
● 2PL is a concurrency control method that guarantees serializability
● Two-Phase Locking Protocol

○ Each Transaction must obtain a S (shared) lock on object before
reading, and an X (exclusive) lock on object before writing
■ If a Transaction holds an X lock on an object, no other Transaction

can get a lock (S or X) on that object
○ A transaction cannot request additional locks once it releases any locks
○ Two phases: acquire locks, release locks

● Issue: can result in “cascading aborts”

T1: R(A) W(A) unlock(A) abort

T2: R(A) abort

A Stable Data Layer - Transactions

Strong Strict Two-Phase Locking
● SS2PL allows only conflict serializable schedules
● SS2PL Protocol

○ Each Transaction must obtain a S (shared) lock on object before
reading, and an X (exclusive) lock on object before writing
■ If a Transaction holds an X lock on an object, no other Transaction

can get a lock (S or X) on that object
○ All locks held by a transaction are released when the transaction

completes

● Avoids cascading aborts

Today’s Agenda

Up Next: User Authentication with Devise

For Next Time…

● Code, code, code!

