CS 290B

Scalable Internet Services

Andrew Mutz

October 21,2014




Today’s Agenda

Motivation
Client-side Caching
Server-side Caching
For Next Time




Motivation

Third party Js, CON
iframes

Persistent
TCP
! Ciinioe s

B ™ ~pesen ~
TCP -~

v

-
Persistent
TCP
< — — TCPSYNACK- — — — —
— =TCP ACK, HTTP REQUEST = =P

< — -HTTP RESPONSE = — — —

."Ono.un'"..



We want our important application data
persisted safely in our data center.

And it needs to be regularly read and updated by
geographically distributed clients.

And it needs to be fast.




Motivation

Performance Matters!

Delay User Reaction

0-100 ms Instant

100 - 300 ms Slight perceptible delay

300 - 1000 ms Task focus, perceptible delay
1 second+ Mental context switch

10 seconds+ I'll come back later...

Source: llya Grigorik (igvita.com)




Motivation

But there are challenges:

Route Distance | Time, lightinvacuum | Time, lightin fiber
NYC to SF 4,148 km 14 ms 21 ms

NYC to London 5,585km |19 ms 28 ms

NYC to Sydney 15,993 km | 53 ms

Equator 40,075km | 133 ms

Source: High Performance Browser Networking, llya Grigorik




Motivation

A page is more than a single request:

Total Requests per Page

100%-
80%
60% -
400/5 1
......nooou.
0
20% 17% 19% 16% \
% S
119 11 - » i 5.
1-25 26-50 51-75 76-100 101-125 126-150 151-175 176-200 201-225 226-250 :.. ==
NG o st
Source: http://httparchive.org/ )




Motivation

The fastest request is the one that never happens!

Cache: acomponent that transparently stores data so that
future requests for that data can be served faster.

Where to introduce caching?
e |[nside the browser
e Infront of the server (CDNs, etc.)
e Inside the application server
e Inside the database (query cache)




Motivation

~

4'
Persistent
TCP
~
~ Persistent '
TP "~
______________ ->
P 4
-
Persistent
TCP

< — — - TCP SYNACK
— —TCP ACK, HTTP REQUEST - —»

< — -HTTP RESPONSE - — — —

Third party JS, CON ~
iframes

()
S/

3|

o

H

o

3

o

o

3

e

e
L3

*0eccssossene®”



Client-side Caching

How does the browser cache data? How does it know when it
can safely present previously seen data as current?

The building blocks are all HTTP headers:

e etag
e cache-control
O max-age
O no-cache
o no-store
o public | private
e if-modified-since
e if-none-match




Client-side Caching

etag: “5bf444d26f9f1c74”

When accompanying a response, the browser will keep this “entity tag” along with
saved copies of the resource.

When requesting the same resource in the future, this tag can be presented to
indicate the version it had previously seen.

This isn’t necessarily a digest of the resource that was served up, but
can be thought of as such.




Client-side Caching

cache-control: no-cache

When accompanying a response, the browser (or
intermediate proxy) is instructed to revalidate before reusing

it.

Without this, the browser can use recently seen
versions safely.




Client-side Caching

cache-control: max-age=120

When accompanying a response, the browser (or
intermediate proxy) should consider this copy fresh until the
specified number of seconds has passed.

The more modern version of the expires and date
headers. i




Client-side Caching

cache-control: no-store

When accompanying a response, the browser (or
intermediate proxy) is instructed to not reuse this data under

any circumstances.

This can also used for sensitive information.




Client-side Caching

cache-control: private

When accompanying a response, the browser (or
intermediate proxy) is instructed that the data is specific to
the requesting user.

Intermediate proxies should discard such data, but a singfes
user browser can reuse it. T &

The opposite of thisis cache-control: public



Client-side Caching

if-modified-since: Sun, 19 Oct 2014 19:43:31

When accompanying a request, this indicates that the client already has a copy
that was fresh as of the specified date.

If the server’s copy is newer than the specified date, it will be served to the client.

If the server’s copy hasn’t changed since the specified date, the server
will return 304 (not modified).




Client-side Caching

if-none-match: “5bf444d26f9f1c74”

When accompanying a request, this indicates that the client has a cached copy
with the associated tag. Multiple etags can be provided.

If the server’s current version has one of the etags listed, the server will return
304 (not modified) withthe etagof the current resource included.

If the server’s version has a non-matching etag, then the result will be
returned as normal.




Client-side Caching

Let’s pull this together and apply what we've
seen.

Let’s say we are serving up some javascript that
won’t change over the next day, but does have
some user-specific code in it. Voo




Client-side Caching

We want it reusable, but private:

Cache-control: private, max-age=86400




Client-side Caching

Let’s say we are serving up an image that may be
changing in the future, and we never want a stale
version shown. The image is not specific to the

requestor.

What headers should the response include?z> x




Client-side Caching

We want it reusable with revalidation and public:

Cache-control: public, no-cache
ETag: “4d7a6ca@5b5df£656”

Clients will request the resource with:

if-none-match: “4d7a6ca®@5b5df656”




Client-side Caching

Let’s say we are serving up an image with the
user’s social security and credit card numbers.

What headers should the response include?




Client-side Caching

We want it reusable, but private:

Cache-control: private, no-store




Today’s Agenda

Motivation
Client-side Caching
Server-side Caching
For Next Time




Server-side Caching

Persistent
TCP
HEmEsT="} ~

= = ~Persistent ~ ~a

DNS lookup
-

o =" — TP "~
<«-——==- _-Y
Persistent
------ TCPSYN=-— — — = ce
< — — TCPSYNACK- — — — —
— =TCP ACK, HTTP REQUEST = =P
F ————————— < — -HTTP RESPONSE - — — —
~ ~
\ Assets via
Third party JS, €PN { -
iframes

eeccrcseseee®”



Server-side Caching

] ins | Main memory reference: Send 2,000 bytes over I Read 1,000,000 bytes

100ns commodity network: 0.0ns sequentially from SSD:

= 0.4us 200,000ns
[ ] L1 cache reference: 1ns smmmmmmEmm 1,000ns % 1ps
oo SSD random read: EEEE Disk seek: 4,000,000ns =
. . 16,000ns =~ 16ps 4ms
[ 11 ]] . '
Branch mispredict: 3ns ========== Compress 1KB wth Zippy:

2,000ns = 2ys n Read 1,000,000 bytes . Read 1,000,000 bytes

EEEE L2 cache reference: 4ns sequentially from memory: sequentially from disk:

10,000ns = 10us = m 12,000ns = 12us 2,000,000ns = 2ms

Packet roundtrip CA to
Netherlands:
150,000,000ns = 150ms

CTTTTTT L] .
HT 1 Mutex lock/unlock: 17ns B Round trip in same
m datacenter: 500,000ns =

500ps

100ns =m
1,000,000ns = Ims ==

O

....0000.0.00"..

Source: http://www.eecs.berkeley.edu/~rcs/research/interactive_latency.html



Server-side Caching

Category
Database
View
Controller
View
View
View
View

View

Segment

SQL - SELECT

occupancies/_sidebar_show.html.erb Partial
OccupanciesController##show
occupancies/_occupancy_financials_show.html.erb Partial
occupancies/_occupancy_status_show.html.erb Partial
occupancies/show.html.erb Template
occupancies/_occupancy_monthly_charges_show.html.erb Partial

notes/_note_show.html.erb Partial

% Time

15.9

118

9.4

5.4

4.3

3.8

2.8

2.3

Avg calls
(per txn)

18.7
0.989
1.0
0.989
0.989
0.989

0.989

Avg
time (ms)

65.3
48.5
38.8

22

17.5

..'“looun'"’.



Server-side Caching

From this data we can see that the network inside our datacenter is fast.

e Roundtrip inside the datacenter is about ~500ns
e Main memory access is ~100ns.

Reads from SSDs are faster, disk is slower

e 0.016msto0.2ms for SSD reads
e 4msto 6ms for magnetic disk reads

Ruby/Rails is slow.

e Some partials are taking tens of milliseconds to
render.




Server-side Caching

Basic math reveals opportunities for caching:

e |f an entire page can be reused, storing it on disk and retrieving it when
needed can bring big wins
o 5ms* vs. hundreds of milliseconds

e |f only part of a page can be reused, it still may make sense to cache it on disk
o 5ms* vs. tens of milliseconds

e Instead of saving on disk, traversing the network and storingin
memory can be faster®.
o What are other advantages to non-local caching?




Rails Caching

Caching has changed significantly in Rails 4.

Rails previously had mechanisms for caching entire pages and actions. As of Rails
4, these have been moved to a separate library called actionpack-
page_caching.

Rails now emphasizes three types of caching:

e HTTP caching
e Fragment caching
e Lowlevel caching




Rails Caching

By default, caching is disabled in development and test, and enabled in

production
e [fyouwanttouseitindevelopment mode, add this to your environment:

config.action _controller.perform caching = true

Rails can be configured to store cached data in a few different places:

e Inmemory
e Localfile system
e Remotein-memory store




Rails Caching

ActiveSupport::Cache::MemoryStore

e Cacheddataisstored in memory, in the same address space as the ruby
process and is retained between requests.

e Defaults to 32 megs, but is configurable.

e Strengths?

e Weaknesses?




Rails Caching

ActiveSupport::Cache::MemoryStore

e Cacheddataisstored in memory, in the same address space as the ruby
process and is retained between requests.
e Defaults to 32 megs, but is configurable.
e Strengths:
o Local memory is fast
e Weaknesses:
o We are likely running many Rails processes on a single .
machine, and these processes can’t use each others memory
cache. i




Rails Caching

ActiveSupport::Cache::FileStore

e Cacheddatais stored on the local file system.

e Can configure the location of the storage in Rails environment:
o config.cache store = :file store, "/path/to/cache/directory"

e Strengths?
e Weaknesses?




Rails Caching

ActiveSupport::Cache::FileStore

e Cacheddatais stored on the local file system.

e Can configure the location of the storage in Rails environment:
o config.cache store = :file store, "/path/to/cache/directory"

e Strengths
o A pool of processes on the same machine can now share the same cache.

e Weaknesses
o Diskisn’t all that fast
o If our production deployment has many machines, they can’t
share caches. i




Rails Caching

ActiveSupport::Cache::MemcacheStore

e Cacheddatais stored in memory on another machine.

e Canconfigure the location of the server in Rails environment:
o config.cache_store = :mem_cache_store, "cache-1.example.com"

e Strengths
o A pool of processes across machines can now share the same cache.
o Aswe’ve seen, intra-datacenter network round trip and memory access
can give us ~1ms responses.
e Weaknesses
o System complexity




Rails Caching - HTTP Caching

HTTP Caching: Rails makes this easy

e By default, Rails sets the etag to an MD5 digest of the content body.
o If subsequent requests generate the same body, a 304 is sent instead of
the body.
o Thisis network efficient and easy, but what’s still inefficient?




Rails Caching - HTTP Caching

We're still generating the response each time.

Solution:

class ProductsController < ApplicationController
def show
@product = Product.find(params[:id])
fresh when last modified: @product.published at.utc,
etag: @product
end
end




Rails Caching - Fragment Caching

Whole-page caching is great when possible, but
for dynamic web applications, it frequently isn'’t.

Fragment caching caches a portion of a rendered view for
reuse on future requests.

(dynamic) alongside a list of products (less dynamic) |




Rails Caching - Fragment Caching

<% Order.find recent.each do |o| %>
<%= o.buyer.name %> bought <%= o.product.name %>
<% end %>

<% cache ‘all_available products’ do %>
ALl available products:
<% Product.all.each do |p| %>
<%= link_to p.name, product url(p) %>
<% end %>
<% end %>




Rails Caching - Fragment Caching

When the products do change, the fragment must be expired
using

expire fragment('all available products')

Manually managing cache expiration can be tricky and lead t
bugs.

Can you think of a better way?



Rails Caching - Fragment Caching

module ProductsHelper
def cache key for products
count = Product.count
max_updated_at = Product.maximum(:updated_at).utc.to_s, :number)
"products/all-#{count}-#{max_updated_at}"
end
end

<% cache(cache_key_ for_products) do %>
All available products:
<% Product.all.each do [p| %>
<%= link_to p.name, product_url(p) %>
<% end %>
<% end %>




Rails Caching - Fragment Caching

Another option is to use the model itself as the cache key:

<% Product.all.each do [p| %>
<% cache(p) do %>
<%= link_to p.name, product_url(p) %>
<% end %>
<% end %>

Which will generate a cache key that includes the updated_at timestamp
(something like “products/23-20130109142513").




Rails Caching - Fragment Caching

We can also nest our fragment caching, for a style referred to as “Russian Doll
Caching”:

<% cache(cache_key for products) do %>
All available products:
<% Product.all.each do |p| %>
<% cache(p) do %>
<%= link_to p.name, product url(p) %>
<% end %>
<% end %>
<% end %>




Rails Caching - Manual Caching

Manual Caching is also supported, for fine-grained control:

#product.rb

class Product

def competing price
Rails.cache.fetch(*/product/#{id}-#{updated_at}/comp_price”,

expires _in => 12.hours) do
Competitor::API.find_price(id)
end
end
end




For Next Time...

Be in a group for tomorrow’s lab. We will be kicking off
projects.

Citrix data center tour Nov 6!

By tomorrow at noon, put on Piazza:

e Teamname
e Foreachteam member
o Name, Github account name, Email




