
CS 290B
Scalable Internet Services

Andrew Mutz
October 21, 2014

Today’s Agenda

Motivation

Client-side Caching

Server-side Caching

For Next Time

Motivation

Motivation

We want our important application data
persisted safely in our data center.

And it needs to be regularly read and updated by
geographically distributed clients.

And it needs to be fast.

Motivation

Delay User Reaction

0 - 100 ms Instant

100 - 300 ms Slight perceptible delay

300 - 1000 ms Task focus, perceptible delay

1 second+ Mental context switch

10 seconds+ I’ll come back later...

Performance Matters!

Source: Ilya Grigorik (igvita.com)

Motivation

Route Distance Time, light in vacuum Time, light in fiber

NYC to SF 4,148 km 14 ms 21 ms

NYC to London 5,585 km 19 ms 28 ms

NYC to Sydney 15,993 km 53 ms 80 ms

Equator 40,075 km 133 ms 200 ms

But there are challenges:

Source: High Performance Browser Networking, Ilya Grigorik

Motivation

A page is more than a single request:

Source: http://httparchive.org/

Motivation

The fastest request is the one that never happens!

Cache: a component that transparently stores data so that
future requests for that data can be served faster.

Where to introduce caching?
● Inside the browser
● In front of the server (CDNs, etc.)
● Inside the application server
● Inside the database (query cache)

Motivation

Client-side Caching

How does the browser cache data? How does it know when it
can safely present previously seen data as current?

The building blocks are all HTTP headers:
● etag
● cache-control

○ max-age
○ no-cache
○ no-store
○ public | private

● if-modified-since
● if-none-match

Client-side Caching

etag: “5bf444d26f9f1c74”

When accompanying a response, the browser will keep this “entity tag” along with
saved copies of the resource.

When requesting the same resource in the future, this tag can be presented to
indicate the version it had previously seen.

This isn’t necessarily a digest of the resource that was served up, but
can be thought of as such.

Client-side Caching

cache-control: no-cache

When accompanying a response, the browser (or
intermediate proxy) is instructed to revalidate before reusing
it.

Without this, the browser can use recently seen
versions safely.

Client-side Caching

cache-control: max-age=120

When accompanying a response, the browser (or
intermediate proxy) should consider this copy fresh until the
specified number of seconds has passed.

The more modern version of the expires and date
headers.

Client-side Caching

cache-control: no-store

When accompanying a response, the browser (or
intermediate proxy) is instructed to not reuse this data under
any circumstances.

This can also used for sensitive information.

Client-side Caching

cache-control: private

When accompanying a response, the browser (or
intermediate proxy) is instructed that the data is specific to
the requesting user.

Intermediate proxies should discard such data, but a single-
user browser can reuse it.

The opposite of this is cache-control: public

Client-side Caching

if-modified-since: Sun, 19 Oct 2014 19:43:31

When accompanying a request, this indicates that the client already has a copy
that was fresh as of the specified date.

If the server’s copy is newer than the specified date, it will be served to the client.

If the server’s copy hasn’t changed since the specified date, the server
will return 304 (not modified).

Client-side Caching

if-none-match: “5bf444d26f9f1c74”

When accompanying a request, this indicates that the client has a cached copy
with the associated tag. Multiple etags can be provided.

If the server’s current version has one of the etags listed, the server will return
304 (not modified) with the etag of the current resource included.

If the server’s version has a non-matching etag, then the result will be
returned as normal.

Client-side Caching

Let’s pull this together and apply what we’ve
seen.

Let’s say we are serving up some javascript that
won’t change over the next day, but does have
some user-specific code in it.

What headers should the response include?

Client-side Caching

We want it reusable, but private:

Cache-control: private, max-age=86400

Client-side Caching

Let’s say we are serving up an image that may be
changing in the future, and we never want a stale
version shown. The image is not specific to the
requestor.

What headers should the response include?

Client-side Caching

We want it reusable with revalidation and public:

Cache-control: public, no-cache
ETag: “4d7a6ca05b5df656”

Clients will request the resource with:

if-none-match: “4d7a6ca05b5df656”

Client-side Caching

Let’s say we are serving up an image with the
user’s social security and credit card numbers.

What headers should the response include?

Client-side Caching

We want it reusable, but private:

Cache-control: private, no-store

Today’s Agenda

Motivation

Client-side Caching

Server-side Caching

For Next Time

Server-side Caching

Server-side Caching

Source: http://www.eecs.berkeley.edu/~rcs/research/interactive_latency.html

Server-side Caching

Server-side Caching

From this data we can see that the network inside our datacenter is fast.

● Roundtrip inside the datacenter is about ~500ns
● Main memory access is ~100ns.

Reads from SSDs are faster, disk is slower

● 0.016ms to 0.2ms for SSD reads
● 4ms to 6ms for magnetic disk reads

Ruby/Rails is slow.

● Some partials are taking tens of milliseconds to
render.

Server-side Caching

Basic math reveals opportunities for caching:

● If an entire page can be reused, storing it on disk and retrieving it when
needed can bring big wins
○ 5ms* vs. hundreds of milliseconds

● If only part of a page can be reused, it still may make sense to cache it on disk
○ 5ms* vs. tens of milliseconds

● Instead of saving on disk, traversing the network and storing in
memory can be faster*.
○ What are other advantages to non-local caching?

Rails Caching

Caching has changed significantly in Rails 4.

Rails previously had mechanisms for caching entire pages and actions. As of Rails
4, these have been moved to a separate library called actionpack-
page_caching.

Rails now emphasizes three types of caching:

● HTTP caching
● Fragment caching
● Low level caching

Rails Caching

By default, caching is disabled in development and test, and enabled in
production

● If you want to use it in development mode, add this to your environment:

config.action_controller.perform_caching = true

Rails can be configured to store cached data in a few different places:

● In memory
● Local file system
● Remote in-memory store

Rails Caching

ActiveSupport::Cache::MemoryStore

● Cached data is stored in memory, in the same address space as the ruby
process and is retained between requests.

● Defaults to 32 megs, but is configurable.
● Strengths?
● Weaknesses?

Rails Caching

ActiveSupport::Cache::MemoryStore

● Cached data is stored in memory, in the same address space as the ruby
process and is retained between requests.

● Defaults to 32 megs, but is configurable.
● Strengths:

○ Local memory is fast
● Weaknesses:

○ We are likely running many Rails processes on a single
machine, and these processes can’t use each others memory
cache.

Rails Caching

ActiveSupport::Cache::FileStore

● Cached data is stored on the local file system.
● Can configure the location of the storage in Rails environment:

○ config.cache_store = :file_store, "/path/to/cache/directory"

● Strengths?
● Weaknesses?

Rails Caching

ActiveSupport::Cache::FileStore

● Cached data is stored on the local file system.
● Can configure the location of the storage in Rails environment:

○ config.cache_store = :file_store, "/path/to/cache/directory"

● Strengths
○ A pool of processes on the same machine can now share the same cache.

● Weaknesses
○ Disk isn’t all that fast
○ If our production deployment has many machines, they can’t

share caches.

Rails Caching

ActiveSupport::Cache::MemcacheStore

● Cached data is stored in memory on another machine.
● Can configure the location of the server in Rails environment:

○ config.cache_store = :mem_cache_store, "cache-1.example.com"

● Strengths
○ A pool of processes across machines can now share the same cache.
○ As we’ve seen, intra-datacenter network round trip and memory access

can give us ~1ms responses.
● Weaknesses

○ System complexity

Rails Caching - HTTP Caching

HTTP Caching: Rails makes this easy

● By default, Rails sets the etag to an MD5 digest of the content body.
○ If subsequent requests generate the same body, a 304 is sent instead of

the body.
○ This is network efficient and easy, but what’s still inefficient?

Rails Caching - HTTP Caching

We’re still generating the response each time.

Solution:

class ProductsController < ApplicationController

 def show

@product = Product.find(params[:id])

fresh_when last_modified: @product.published_at.utc,

 etag: @product

 end

end

Rails Caching - Fragment Caching

Whole-page caching is great when possible, but
for dynamic web applications, it frequently isn’t.

Fragment caching caches a portion of a rendered view for
reuse on future requests.

For example, we may have a page listing recent orders
(dynamic) alongside a list of products (less dynamic)

Rails Caching - Fragment Caching

<% Order.find_recent.each do |o| %>
 <%= o.buyer.name %> bought <%= o.product.name %>
<% end %>

<% cache ‘all_available_products’ do %>
 All available products:
 <% Product.all.each do |p| %>

<%= link_to p.name, product_url(p) %>
 <% end %>
<% end %>

When the products do change, the fragment must be expired
using

expire_fragment('all_available_products')

Manually managing cache expiration can be tricky and lead to
bugs.

Can you think of a better way?

Rails Caching - Fragment Caching

module ProductsHelper
 def cache_key_for_products
 count = Product.count
 max_updated_at = Product.maximum(:updated_at).utc.to_s, :number)
 "products/all-#{count}-#{max_updated_at}"
 end
end

…

<% cache(cache_key_for_products) do %>
 All available products:

<% Product.all.each do |p| %>
<%= link_to p.name, product_url(p) %>

 <% end %>
<% end %>

Rails Caching - Fragment Caching

Another option is to use the model itself as the cache key:

<% Product.all.each do |p| %>
 <% cache(p) do %>

<%= link_to p.name, product_url(p) %>
 <% end %>
<% end %>

Which will generate a cache key that includes the updated_at timestamp
(something like “products/23-20130109142513”).

Rails Caching - Fragment Caching

We can also nest our fragment caching, for a style referred to as “Russian Doll
Caching”:

<% cache(cache_key_for_products) do %>
 All available products:
 <% Product.all.each do |p| %>

<% cache(p) do %>
 <%= link_to p.name, product_url(p) %>

<% end %>
 <% end %>
<% end %>

Rails Caching - Fragment Caching

Manual Caching is also supported, for fine-grained control:

#product.rb

class Product
 def competing_price

Rails.cache.fetch(“/product/#{id}-#{updated_at}/comp_price”,
 expires_in => 12.hours) do

 Competitor::API.find_price(id)
end

 end
end

Rails Caching - Manual Caching

For Next Time...

Be in a group for tomorrow’s lab. We will be kicking off
projects.

Citrix data center tour Nov 6!

By tomorrow at noon, put on Piazza:
● Team name
● For each team member

○ Name, Github account name, Email

