CS 290B

Scalable Internet Services

Andrew Mutz

October 14, 2014

Today’s Agenda

Motivation
HTTP Servers
Application Servers

For next time...

Quick Announcement

Tomorrow’s lab (and all future labs) will
be in Phelps 3525!

Motivation

\ — DNS lookt
“ up ’
,1 Persistent
. TCP
DNS lookup - o
;,: = Persistent) \
3 TCP -~
a———==- _-Y
Persistent
________ TCP
< — — TCPSYNACK: — — — —
— = TCP ACK, HTTP REQUEST = —»
F ————————— < — -HTTP RESPONSE = — — —
~ ~
\ Assets via
Third party Js, ©PN - <
iframes
\
()
s
s
o
o
o
o
o
3
o
o
3
S
e

“"no.un‘""

Motivation

We've seen the HTTP protocol.

The world is full of browsers, apps & other clients that expect to be able to

e OpenaTCP socket

e Send over arequest (verb & resource)
e Havetherequest processed

e Receivedatainaresponse

e Reuse the socket for multiple requests

The software systems that do this are generally divided into two parts

e HTTP Servers
e Application Servers

Motivation

Why not just have a single process that handles all this?

Why do we need two separate notions of an HTTP server and an App server?

The general answer is the two have separate concerns and separate design goals.
e HTTP Server:

o High performance HTTP implementation

o Stable, secure, relatively static

o Highly configurable and language/framework agnostic
o Concurrency concerns dealt with here (mostly)

e App Server:
o Specific language, frequently lower-performance
o Contains business logic and is very dynamic
o More concerned with optimizing human resources
m Commonly alarge MVC architecture

HTTP Servers

Web server developers: Market share of the top million busiest sites
B Apache

ﬁ ETC M FT B Microsoft

) [Other
0,
B Google

80%

40%
Oct 2014
®m Apache: 50%
®m Microsoft: 13%
20% — w Other: 14% —®
~ s=—s== Enginx: 20% ="
—— ®m Google: 3%
0% —— — —
NIIPR IR IR IV PR AR PR SR P R PN - - BN RN
e 2@‘0 03&1009013@‘& 1000\%2§'&%1091030°¢°50“ 2\0“ rLQP,Q‘(LZeQrLge“rLQw\@

HTTP Servers

HTTP Server’s responsibilities:

Parse HTTP requests and and craft HTTP responses very fast
Dispatch to the appropriate handler and return response

Be stable and secure

Provide clean abstraction for backing applications

Many possible ways to architect an HTTP server:

Single Threaded

Process per request

Thread per request
Process/thread worker pool
Event-driven

HTTP Servers - Single Threaded

Single threaded approach:

e Bind() to port 80 and listen()
e Loop forever and..
o Accept() a socket connection
o While we can still read from it
m Readarequest
m Processthat request
m Writeresponse
o Close connection

If another request comes in before we get back around to
accept() another, what happens?

HTTP Servers - Single Threaded

Problem!
o If wedon’t quickly get back to accepting more connections, clients end up waiting or
worse

o We are building web applications, not web sites:

e These requests are usually much more than simply serving a file from disk

e |tiscommon to have a web request doing a significant amount of
computation and business logic

e [tiscommon to have a web request talk to multiple external services:
databases, caching stores, SOA services

e These requests can be anything: lightweight or heavyweight, 10 intensive or
CPU intensive

We can solve these problems if the thread of control that processes the request is
separate from that listening and accepting new connections.

HTTP Servers - Process Per Request

Why not handle each requests as a subprocess? Request
Parent Process

e Bind() to port 80 and listen()
e Loopforever and... Child Process
o Accept() a socket connection
o iffork() ==
m While we can still read from it
e Readarequest
e Processthat request
e Writeresponse
m Close connection, exit

HTTP Servers - Process Per Request

Strengths: Request

e Simple Parent Process
e Greatisolation between requests
e No problems with multiple threads

Child Process
Weaknesses:

e Doeseachrequest duplicate process memory?

e What happens when load keeps rising?

e Isitefficient to be firing up a process on each request?
o Each of these does setup work

HTTP Servers - Process Pool

Request

Instead of spawning a new process each time Parent Process
we get a request, we can create a pool of N Shered Memory
processes at the beginning and dole out Child Process . Chid Process | Child Process

requests to them.

The children are responsible for accepting
incoming connections, and use shared memory
to coordinate.

—N Processes

The parent process watches the level of busy-
ness of the children and adjusts the number of
children as needed.

HTTP Servers - Process Pool

Request

Strengths:

Parent Process

e Greatisolation between requests. Children die after
M requests to avoid memory leakage.

e Process startup/setup costs are avoided

More predictable behavior under high load.

e Still no problems with multiple threads

Shared Memory
A
Child Process _ Child Process _ Child Process

Weaknesses:

e System more complex than before N Processes

e Many processes can mean a lot of memory
consumption

This basic structure is Apache 2.x MPM “Prefork”.

HTTP Servers - Thread per request

Request

Why use multiple processes at all? Why not
just have a single process, and each time we

get a new connection we spawn another
thread?

e Bind() to port 80 and listen()
e Loop forever and...
o Accept() a socket connection
o pthread_create a function that will...
m While we can still read from it
e Readarequest
e Processthat request
e Writeresponse
m Close connection, thread dies

HTTP Servers - Thread per request

Request

Strengths:

e Fairly simple
e Memory footprint is reduced versus processes

Weaknesses:

e Thecode handling each request must be thread safe

e Pushing thread-safety on to the application developer
isn’t ideal

e Setup (database connections, etc.) needs to happen
each time

HTTP Servers - Process/Thread Pool

Request

Can we see benefit from combining these Parent Process
techniques?

Shared Memory
Ctild Process _ Child Process _ Child Process

Master process spawns processes, each with many
threads. Master maintains process pool.

Processes coordinate through shared memory to
accept requests.

Fixed threads per request, scaling is done at the
process level.

HTTP Servers - Process/Thread Pool

Request

Stren gt hs: Parent Process

e Faultsisolated between processes, but not threads Shared Memory

e Threads reduce our memory footprint and we still get a tuneable
level of isolation

e Controlling the number of processes and threads allows
predictable behavior under load

Weaknesses:

e Need thread-safe code
e Uses more memory than an all-thread based approach

Ctild Process _ Child Process _ Child Process

This is Apache 2.x MPM “Worker”

HTTP Servers

Next we will discuss event-driven architectures and nginx.

But first, a thought experiment: the C10K problem.

HTTP Servers

C10K Problem, originally posed in 2001

e Given a 1ghz machine with 2gb of RAM, and a gigabit ethernet card, can we

support 10,000 simultaneous connections?

o 10,000 clients means...
o 100Khz CPU, 200Kbytes RAM, 100Kbits/second network for each
o Shouldn’t we be able to move 4kb from disk to network once a second?

This is difficult, but it seems like it shouldn’t be.

What are we spending time doing?

HTTP Servers

Lets say I've got 10K connections. Each is doing something
like this:

Read from the network socket

Parse the request

Open the correct file on disk

Read the file into memory

Write the memory to network

HTTP Servers

Lets say I've got 10K connections. Each is doing something
like this:
Read from the network socket (system call - WAIT)
Parse the request
Open the correct file on disk (system call - WAIT)
Read the file into memory (system call - WAIT)
Write the memory to network (system call - WAIT) xw“““

HTTP Servers

Each time I’'m waiting on I/O, I’'m not runnable, but I’'m not

cost-free.

e | needto be considered every time the scheduler does
anything.

e Before |l waited, my memory accesses pushed others’
data out of caches

This massive concurrency slows down all processes.

HTTP Servers

Since much of these problems have their root in these
blocking system calls, can we accomplish all the same tasks

without blocking?

Yes, with asyncronous io:

e select(): Hereis a list of file descriptors. Block until ready for 10.
e epoll_*(): Lets keep a list of FDs in kernel space. Block until ready.

HTTP Servers - Event Driven

Let’s say we have a list of sockets called fd 1ist

loop forever:
select (fd list, ...) //block until one of this list is ready
for each fd in fd list
if fd is ready for IO
some handler (£d)

else do nothing.

e some handler caninclude socketacceptance.
e some handler absolutelycan'tdo blockingIO.
o Howdo we handle this 10?
e Whatdowedoif some handler isdoinga lot of computation?

HTTP Servers - Event Driven

These systems are called event driven systems. 0
e Onlyneed asingle thread (although can support more) NG l Mx

e Well known examples:

O

0O O O O O O

nginx /
Tengine

LightTPD

nlegtty (java) LIGH]TPD

node.js (javascript) ﬂyhght
eventmachine (ruby) 3
twisted (python)

HTTP Servers - Event Driven

Strengths:

e High performance under high load

NGiINX
U

e Predictable performance under high load

e No need to be thread-proof /

Weaknesses: LIGH]TPD

e Poor Isolation fly light.
o Ifabugcauses an infinite loop, what happens?
e Fewer extensions, since code can’t use blocking syscalls
e Verycomplex
o See nextslide...

HTTP Servers - Event Driven

Code is dominated by callbacks:

o NGiINX

page = EM::HttpRequest.new('http://google.ca/") .get
.errback { p "Google is down! terminate?" } t/////

page
page.callback {

a = EM::HttpRequest.new ('http://google.ca/search?g=en') .get LIGHI IPD
a.callback { # callback nesting, ad infinitum } fiv light
y ignt.

a.errback { # error-handling code }

This can lead to code that is confusing and hard to maintain.

HTTP Servers

To recap, there are many possible ways to architect an HTTP server:

e Single Threaded
e Process per request
o Greatest isolation, largest memory footprint
e Thread per request
o Smaller memory footprint, less isolation
e Process/thread worker pool
o Tuneable compromise between processes & threads
e Event-driven
o Great performance under high load
o Harder to extend and reduced isolation

Application Servers

We are building web applications, so we will need complex server-side logic.

We can extend our HTTP servers to do this through modules, but there are
benefits to breaking out application servers to a distinct process:

Application logic will be dynamic, whereas HTTP is more static

Application logic regularly uses high level (slow) languages vs. needs of high-performance
Security concerns are easier: HTTP server can shield the app server from some things
Startup/setup costs can be amortized if the app server is running continuously

Instead, we can have a separate Application server and forward each
request to it for handling.

We will be looking primarily at Ruby application servers.

Application Servers

Our HTTP server needs to communicate each request to the App server, and the
response needs to be sent back.

How is this done?

e CGl-Spawn aprocess, passin HTTP headers as ENV variables
e FastCGl, SCGI - modifications to CGl to allow persistent processes.
e HTTP - Essentially a reverse-proxy configuration
o Why does it make sense to have an HTTP server in front of a
server that speaks HTTP?

Application Servers

Many of the same questions regarding concurrency haven’t gone away:
e Should we handle these requests via processes? Threads? Evented?

If we are using the standard C Ruby interpreter (Matz’s Ruby Interpreter), then
we have a Global Interpreter Lock to deal with.

e Onlyone thread of control can be executing in a given Ruby process at a
given time
e JRubyhasnoGIL

The existence of the GIL simplifies things: using threads for
concurrency won't get us very far.

Application Servers

Mongrel

e Administrator sets up a pool of processes running the
Mongrel app server

e Mongrel app server speaks HTTP

e Apache or nginxis set up to act as a reverse proxy and
load balance between Mongrel processes using (for
example) mod_proxy_balancer

e Monit watches pool of mongrels, restarts any thatg"'
died.

Application Servers

Phusion Passenger

e A passenger module is added to Apache or nginx
e Thecoderunninginside the HTTP server knows what

it is load balancing and actively controls the size of the
pool.

e Two advantages:
o Simple mechanism to increase/decrease the pool

o Processes can be forked after ruby/rails is
loaded.

m Whyis this good?

Application Servers

Unicorn:

e Similar to passenger in that it manages a pool of
processes to handle requests, and can take advantage
of CoW.

e Similar to Mongrel, in that it needs* an HTTP server
configured for load balancing in front of it

e Advantages over passenger:

o Better monitoring of workers
o Supports hot-restarts of code changes

Application Servers

Puma
e What if we can deploy on a Ruby VM without a
GIL?

o JRuby or Rubinius
e If we move away from the GIL, we can avoid process-
based parallelism and choose threads instead
e Common setups involve a load balancer in front of
multiple Ruby processes, each with multiple threads.
o We can tune the isolation vs. memory footprint

For Next Time...

e Tomorrow’s lab (and all future labs) will be in
Phelps 3525!

e For Thursday read “Dynamic Load Balancing on Web-
server Systems” by Cardellini, Colajanni, Yu

o http://www.ics.uci.edu/~cs230/reading/DLB.pdf
e By Tomorrow

o Complete through chapter 8 in AWDR

o Attempt Bryce's challenges, come to lab with -
questions. '

http://www.ics.uci.edu/~cs230/reading/DLB.pdf
http://www.ics.uci.edu/~cs230/reading/DLB.pdf

