
What I’ve learned
about scalable apps

UCSB CS 290 ● November 20, 2014  

Colin Kelley
CTO, Cofounder ● Invoca, Inc.

colin@invoca.com

1

mailto:colin@ringrevenue.com

My background

Digital Sound Corp / PulsePoint / Unisys
‘90s: Software Architect

CallWave, Inc ‘00s: CTO

RingRevenue, Inc ’08 +: Cofounder/
CTO

RingRevenue becomes Invoca, 2013

2

Scaling distribution

Cost vs. Scale

3

units?

Complexity = O(n)

Cost = Density ₒ O(n)

Digital Sound Corp

96 port voicemail system

• Intel 80386 133 MHz

• 8 MB RAM

• Custom Unix System V w/cooperative
multi-threading

4

Challenge: cluster state-wide servers
with distributed phone directory

Predecessor version

• Built for generality

• Disk intensive

Tested for < 1,000 phone numbers. Fell
over when asked to scale to 10,000.

Why? O(n) = n2 !

5

Redesigned

• Network model database

• Clustered storage

• B+Tree indexed

• Most Recently Used disk cache

Scaled to 1 million phone numbers

Why? O(n) = log(n)

6

Generality

★Generalize only if it simplifies.

★Otherwise, trust agility.  
Generalize later!

7

★Know what metrics determine your
density & limit your scalability

★Complexity O(n) matters most

8

Optimizing density

• Profiling discovered that ~20% of CPU
spent calculating time(); ~15% of CPU
spent copying static voice prompts

• Optimization: separate thread to get
the time ~once / second

• Optimization: cache prompts

• 96 ports ➞ 120 ports 1.25X cheaper

9

Optimization...

★Do it only when you have the need
and have the data

10

hinders evolution 

Therefore:

Don’t do it!
Do it later!

CallWave architecture
Clients:

• Windows EXE, web browser, phone

Servers:

• Session Managers: stateful non-persistent / partitioned

• Web Servers: stateless

• Call Managers: stateless  
 + Media Store: stateful / partitioned

• Database: stateful persistent / 
partitioned Customer vs. Message 
 primary + standby + reporting

11

Experts
Say

State
Pop. to

Drop 1%

Budget Stalemate
Resolved

Legislature Raises Sales Tax 1%

12

Scaling factor (X)
7.25% ➞ 8.25%

Is that +1%? Or +14%?

Scaling factor is 1.14X

100% ➞ 99%

Scaling factor is .99X

13

Experts
Say

State
Pop. to

Drop 1%

Budget Stalemate
Resolved

Legislature Raises Sales Tax 1%

Net change: 1.14 ₒ .99 = 1.13X

Measure change
“CPU usage changed by 20%”

• Assuming it started at 50%, what did it
change to? 
 

Formula = X factor
50% - 20% 30% 1.67X
50% + 20% 70% .71X
50% *80% 40% 1.25X
50% / 80% 62% .80X

50% *120% 60% 1.20X
50% / 120% 42% .83X

14

Sales funnels

15

Change lessons

★Express change as X factor

★ If someone tells you change as a %,
ask them restate as before ➞ after
values.

16

Scalability: Statelessness,
like Ignorance, is Bliss

• Stateless servers are trivial to scale
horizontally. Linear.

★Caching still “stateless” (empty
cache should be slow/harmless), but
don’t forget: 
 cache refresh / coherency 
 priming...

17

Scalability 2: Statefulness
is a necessary evil

★Isolate state. Further isolate
persistent state (database, media...)
from non-persistent (session...)

★Partition stateful servers when
possible to scale horizontally

• Worst case: scale vertically... 
until you can’t.

18

Availability

• No single point of failure: State partitioned or
redundant

★Prefer Active/Active over Active/Passive

★Watch for correlated failure (e.g.: routers
coordinated with BGP; network providers using
same backbone; EBS using same S3)

★End-to-end failover is necessary and sufficient

★Without monitoring all systems lose their
redundancy over time!

19

Lessons learned

★ Invest in architecture. Use cheap
commodity hardware.

★Don’t own / manage your own
infrastructure

★Don’t prepay for scale based on Sales
projections :-)

★Monitoring is really difficult

20

Moore’s Law

• Computer power doubles every (1.5 -)
2 years; or

• For given power, cost drops in half
every 2 years; or

• Annual Cost Of Goods Sold (COGS)
improvement = 1.41X

21

Moore’s Law meets
 Software as a Service

Year Cost 
/user/month

2014 $1.00
2015 $0.71
2016 $0.50
2017 $0.36
2018 $0.25

Example: $7 monthly service

22

2014

23

$7 monthly service

2015

24

$7 monthly service

2016

25

$7 monthly service

2017

26

$7 monthly service

2018

27

$7 monthly service

Moore’s Law meets
Software as a Service

Year Cost 
/user/month

Gross profit
margin

Annual
improvement

2014 $1.00 86%
2015 $0.71 90% 1.05X
2016 $0.50 93% 1.03X
2017 $0.36 95% 1.02X
2018 $0.25 96% 1.01X

Example: $7 monthly service

28

Annual Improvement

29

Commodity
(blue)

Innovation
(red)

Typical gross margin 10% 70%

gnuplot>

Invoca

• Web Servers (Rails)

• MySQL Database

• transactional

• tabular

• + data warehouse

• Cassandra: transient, rapid, write-heavy

• Load Balancer

• Redis for caching

• Telephony Servers

• Cross-Region Proxy

30

Why Ruby on Rails at
Invoca?

• Model / View / Controller architecture

• Agile/XP built in: automated unit,
functional, integration testing

• Modern (e.g. Ajax and CSS not after-
thoughts)

• SB: AppFolio, RightScale, RightSignature,
BioIQ, InTouch Health, Procore...

• Fun!

31

Invoca lessons learned
so far

32

★Expressiveness = productivity

★Meta-programming rocks

★Ruby with its open (duck-punchable)
classes is incredible for open source

★Cloud computing deserves the hype!

★Plan for scale but pay for it as you go

?

33

