What I've learned
about scalable apps

UCSB CS 290 e November 20, 2014

Colin Kelley
CTO, Cofounder « Invoca, Inc.

colin@invoca.com

mailto:colin@ringrevenue.com

My background

Digital Sound Corp / PulsePoint / Unisys
‘O0s: Software Architect

CallWave, Inc ‘O0s: CTO

RingRevenue, Inc '08 +: Cofounder/
CTO

RingRevenue becomes Invoca, 2013

&

Scaling distribution

Cost vs. Scale

Complexity = O(n)
Cost = Density x O(n)

3

Digital Sound Corp

96 port voicemail system

e Intel 80386 148 MHz
e 3 MiB RAM

e Custom Unix System V w/cooperative
multi-threading

Challenge: cluster state-wide servers
with distributed phone directory

Predecessor version
e Built for generality
e Disk intensive

Tested for < 1,000 phone numbers. Fell
over when asked to scale to 10,000.

Why? O(m) =n=!

Redesigned

e Network model database

e Clustered storage

e B+Tree indexed

e Most Recently Used disk cache
Scaled to 1 million phone numbers
Why? O(Mm) =1log(n)

6

Generality

Generalize only if it simplifies.

Otherwise, trust agility.
Geeneralize later!

Know what metrics determine your
density & limit your scalability

Complexity O(n) matters most

Optimizing density

Profiling discovered that ~20% of CPU
spent calculating time(); ~ 15% of CPU
spent copying static voice prompts

Optimization: separate thread to get
the time ~once / second

Optimization: cache prompts

96 ports — 120 ports 1.25X cheaper

9

Optimization...
hinders evolution

Therefore:

p R RS
Don’t Qo 1u!

Do it only when you have the need
and have the data

10

CallWave architecture

Clients:

e Windows EXE, web browser, phone

Servers:

e Session Managers: stateful non-persistent / partitioned
e Web Servers: stateless

e Call Managers: stateless
+ Media Store: stateful / partitioned

e Database: stateful persistent /
partitioned Customer vs. Message
primary + standby + reporting

11

Budget Stalemate
Resolved

Legislature Raises SaJes Tax 1%

12

Scaling factor (X)

Budget Stalemate 7.25% — 8.25%
Resolved

Legislature Raises Sales Tax 1%

Is that +1%% Or +14%%
ocaling factor is 1.14X

EXDES 100% — 99%
Say Scaling factor is .99X

LI A0 Net change: 1.14 x .99=1.13X
Drop 1%

13

Measure change

“CPU usage changed by 20%”

e Assuming it started at 50%, what did it
change to?

Formula = X factor
50% - 20% 30% 1.67X
50% + 20% 70% 71X
50% *80% 40% 1.25X
50% / 80% 6:2% 80X

50% *120% 60% 1.20X
50% / 120% 42% 83X

14

2% 3
AR e
e Tt

Change lessons

Express change as X factor

If someone tells you change as a %,
ask them restate as before — after
values.

16

Scalability: Statelessness,
like Ignorance, is Bliss

e Stateless servers are trivial to scale
horizontally. Linear.

Caching still “stateless” (empty
cache should be slow/harmless), but
don’t forget:
cache refresh / coherency
priminsg...

17

Scalability &: Statefulness
is a necessary evil

Isolate state. Further isolate
persistent state (database, media...)
from non-persistent (session...)

Partition stateful servers when
possible to scale horizontally

e Worst case: scale vertically...
until you can'’t.

18

Availability

e No single point of failure: State partitioned or
redundant

Prefer Active/Active over Active/Passive

Watch for correlated failure (e.g.: routers
coordinated with BGP; network providers using
same backbone; EBS using same S3)

End-to-end failover is necessary and sufficient

Without monitoring all systems lose their
redundancy over time!

19

L.essons learned

Invest in architecture. Use cheap
commodity hardware.

Don’t own / manage your own
infrastructure

Don’t prepay for scale based on Sales
projections :-)

Monitoring is really difficult

20

Moore’s Law

e Computer power doubles every (1.5 -)
& years; or

e For given power, cost drops in half
every & years; or

e Annual Cost Of Goods Sold (COGS)
improvement = 1.41X

1l

Moore’s Law meets
Software as a Service

Example: $7 monthly service

Cost

Year /user/month

2014 $1.00

2015 $0.71

016 $0.50

2017 $0.36

<018 $0.25

R

Moore’s LW meets
Software a,s a service

Example: $7 monthly Sralels

user/immon IMNargin 1IMproveimen
2014 $1.00 86%
2015 $0.71 90% 1.05X
2016 $0.50 03% 1.03X
2017 $0.36 05% 1.02X
2018 $0.25 96% 1.01X

28

Annual Improvement

Commodity Innovation
(blue) (red)
Typical gross margin 10% 70%

1S

e L.oad Balan

e Red

for cach

Why Ruby on Rails at

Invoca®?

e Model / View / Controller architecture

e Agile/XP built in: automated unit,

fu:

e Modern (e.g. Ajax a:

ctional, integration testi:

thoughts)

ar

nd CSS not after-

e SB: AppFolio, RightScale, RightSignature,

e F'u

n !

31

Biol@, InTouch Health, Procore...

Invoca lessons learned
so far

Expressiveness = productivity
Meta-programming rocks

Ruby with its open (duck-punchable)
classes is incredible for open source

Cloud computing deserves the hype!

Plan for scale but pay for it as you go

32

