NoSQL Datastores

UCSB Nov 4t 2014

Josep M. Blanquer

blanquer@gmail.com

“Broad overview of NoSQL technologies”

* [ntro
* 100K feet introduction to 5 NoSQL DBs
* Deeper dive, in terms of:

Storage

Interface

System architecture

Storage architecture

e Academia

BSCS: Multi-process scheduling
MSCS: Networking
Ph.D: Scalable Web services

* Industry

Manager Internet Service Provider
Research @Bell-Labs

Advanced development @ Citrix
Chief Architect @ RightScale

NoSQL technologies under study:

Cassandra
MongoDB
Redis
Kafka

Elasticsearch

(S
L

Preface: Cassandra e

cassandra
Apache Cassandra is an open source, distributed database

management system designed to handle large amounts of
data across many commodity servers, providing high
availability with no single point of failure. Cassandra offers
robust support for clusters spanning multiple datacenters,

with asynchronous masterless replication allowing low
latency operations for all clients.

Preface: MongoDB J mongoDB

MongoDB (from "humongous") is a cross-platform
document-oriented database. Classified as a NoSQL
database, MongoDB eschews the traditional table-based
relational database structure in favor of JSON-like
documents with dynamic schemas (MongoDB calls the
format BSON), making the integration of data in certain
types of applications easier and faster.

Preface: Redis é
redis

Redis is an open source, BSD licensed, advanced key-value
cache and store. It is often referred to as a data structure
server since keys can contain strings, hashes, lists, sets,
sorted sets, bitmaps and hyperloglogs.

Redis: Remote Dlctionary Server

gt

kafka

Apache Kafka is an open-source message broker project
developed by the Apache Software Foundation written in
Scala. The project aims to provide a unified, high-
throughput, low-latency platform for handling real-time

data feeds. The design is heavily influenced by transaction
logs.

Preface: Elasticsearch

Elasticsearch is a search server based on Lucene. It provides
a distributed, multitenant-capable full-text search engine
with a RESTful web interface and schema-free JSON

documents.

Deeper Dive

Cassandra ‘/"%y

cassandra
* Most similar to a RDBMS

* From a tabular and querying stance

* No relationships or joins possible

* Designed for large datasets

e Similar to:

e HBase (Google)
* DynamoDB (AWS)

Cassandra: Storage _/»%,

cassandra
e Has tables called ColumnFamilies:
e |ike distributed Hashes

 Each table (ColumnFamily) has rows:
 Value of a row is like a “big” Hash
* Values per row can be schemaless
* Very long rows (many values / row)

Users ColumnFamily:

row key columns ...

email address

state
jbellis

jb@ds.com 123 main

email address state

dhutch
dh@ds.com

egilmore

Cassandra: Storage 4%

. . cassandra
e Static Column Family
Example: Users

row key columns ...

email address

jbellis

jonathan jb@ds.com 123 main

Known column names

name email address state
dhutch
daria dh@ds.com 45 2™ St. CA

name email
egilmore

* Dynamic Column Family

Example: friends
row key columns ...

dhutch egilmore

datastax mazcassie
jbellis

Dynamic column names

egilmore
dhutch

datastax mzcassie
egilmore

Cassandra: Interface W

cassandra

e CAQL interface, similar to SQL

* But very limited features

 Mostly key value queries

e (Can create 2"9%" jndexes on column values
* Fixed sort order within row

* No transactions or joins:

* Batch atomicity possible

 High amount of denormalization

* Can control consistency per statement

* <quick look at CQL slides>

Cassandra: System arch. W

cassandra

* Distributed and Highly Available
 Masterless system (all are coordinators)
 Data automatically split across nodes
 Each datum can be replicated N times

e Supports datacenter groups

 Reads are eventually consistent:

 But it can be made strictly consistent

* <peek at architecture slides>

Cassandra: Storage arch. 4%

cassandra
e Memtables

e Commitlog

e SSTables

* Corollary:

* Writes: really, really fast
 Delayed compactions and repairs

 Reads: fast
* But merges are performed on the fly

MongoDB ‘mongoDB

* Adocument DB
* No intra-document relationships
 But some nesting and joins possible

MongoDB: Storage J mongoDB

Has “tables” called document collections
Each collection has JSON documents

Stored JSONB format

A document

Is @ JSON hash hash with (key: id)
Schema does not need to be defined
Can nest other JSON documents

Can also have references to others
e But app needs to do the “join”

MongoDB: Interface ‘mongoDB

 Query by primary key: doc id

* Or by any indexed document fields

* No transactions or joins

* Consistent reads and atomic updates
e Custom query language

db.users.insert (<«—— collection

name: "sue”, <«—— field: value q
) . ocument
age: 26, <+—— field: value

status: "A" <«—— field: value
}
)

MongoDB: System arch. “mongoDB

 Master-slave system (replica sets)

* Collections can be sharded (see next slide)
 Each shard can have a replica set
* Mongos will know what shard to access
* Config servers map data to shards

* Consistency:
e Strict when reading from primary
 Eventual when reading from replicas

MongoDB: System arch. .mongoDB

Router
(mongos)

Router
(mongos)

w®,
“o. _Config Server
N Config Server |
Y |
el
/" 2 or more Shards

Shard Shard

(replica set) (replica set)

MongoDB: Storage arch. ‘mongoDB

e Journaled writes
 Custom memory-mapped files
e Both for documents and indexes

Redis

* Anin-memory DB
* Supports many datastructures
* Also supports pub/sub

Redis: Storage

* Native structures
* Lists
e (sorted)Sets
e Hashes
* Bitmaps
* HyperLoglogs

Redis: Interface é

redis
Basically the same you’d do in memory

 Hashes by key, Lists by index

e Top-K elem of sorted Sets

* Push/pop

Also subscribe/publish to topic by name
Transactions are available

Very simple TEXT protocol

Redis: System arch. é
redis
* Supports master-slave system

* Replication: Sentinel as of 2.8
* |t monitors the master/slaves
e (Can automatically promote and resync
 Or can send a message to do that

Redis: Storage arch.

e Allin-memory structures
* Possibility of persisting to Disk
 RDB: Redis Database File
* Forks and saves a full dump
 AOF: Append-Only File
e Saves updates to a log
 Logis replayed upon start

kafkao

Not similar to a DB at all

It is a persistent queue/bus

Very high-throughput

Uses Zookeeper to coordinate:

* Distributed kafka brokers

* Consumer/ConsumerGroups offsets

Kafka: Storage §€
kafka

* Has topics (i.e., named queues)

* Topics have partitions (for parallelism)
* fully ordered sequence of messages
 |Immutable sequence (append only)

gt

kafkao

* Push N messages to topic/partition
* Can control the consistency
* Batching possible / async
* Consumer-groups
 Read messages for topic/partition
* (Can start from offset O
* Batching possible
* Binary TCP protocol
« complex clients: need to use ZooKeeper

gt

Y I | kafka
Distributed system (multiple brokers)

Partitions are split across brokers

Each partition has a master (+slaves)
Each message can be replicated N times
Uses Zookeeper to manage cluster
 Connected brokers to zk nodes

* Notifications when brokers disconnect
* Spreading and rebalancing partitions

gt

kafkao

Partitions of topics stored in flat files
Plus some metadata to map files o each
topic/segment

Corollary:
 Writes: really, really fast (file write)
 Reads: really really fast (sendfile)

Elasticsearch

* Deep JSON document indexing
 Geared towards flexible indexing terms
* And to perform analytics on data

e Multi-tenant

Elasticsearch: Storage

e Uses Lucene indexes underneath.

Elasticsearch: Interface

Powerful search (incl. Lucene query)
~ull-text index, highlighting, more like this...
Powerful analytics, faceting

Percolator

REST interface

Query examples

Elasticsearch: System arch.

e Distributed nodes

* Data split across shards

* Shards can be replicated N times
 Uses Zen discovery to organize cluster

Elasticsearch: Storage arch.

e Partitions data into shards
e Each shard has a Lucene index
* |ndexes are flushed periodically

NoSQL technologies

 (Cassandra

* MongoDB
 Redis

e Kafka

e Elasticsearch

That’s a wrap!

Questions?

